关于分数微积分中的泰勒公式:概述和卡普托导数的特征描述

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Roberto Nuca, Matteo Parsani
{"title":"关于分数微积分中的泰勒公式:概述和卡普托导数的特征描述","authors":"Roberto Nuca, Matteo Parsani","doi":"10.1007/s13540-024-00311-2","DOIUrl":null,"url":null,"abstract":"<p>This paper discusses some aspects of Taylor’s formulas in fractional calculus, focusing on use of Caputo’s definition. Such formulas consist of a polynomial expansion whose coefficients are values of the fractional derivative evaluated at its starting point multiplied by some coefficients determined through the Gamma function. The properties of fractional derivatives heavily affect the expansion’s coefficients. In the first part of the paper, we review the currently available formulas in fractional calculus with a particular focus on the Caputo derivative. In the second part, we prove why the notion of sequential fractional derivative (i.e., <i>n</i>-fold fractional derivative) is required to build Taylor expansions in terms of fractional derivatives. Such properties do not seem to appear in the literature. Furthermore, some new properties of the expansion coefficients are also shown together with some computational examples in Wolfram Mathematica.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Taylor’s formulas in fractional calculus: overview and characterization for the Caputo derivative\",\"authors\":\"Roberto Nuca, Matteo Parsani\",\"doi\":\"10.1007/s13540-024-00311-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper discusses some aspects of Taylor’s formulas in fractional calculus, focusing on use of Caputo’s definition. Such formulas consist of a polynomial expansion whose coefficients are values of the fractional derivative evaluated at its starting point multiplied by some coefficients determined through the Gamma function. The properties of fractional derivatives heavily affect the expansion’s coefficients. In the first part of the paper, we review the currently available formulas in fractional calculus with a particular focus on the Caputo derivative. In the second part, we prove why the notion of sequential fractional derivative (i.e., <i>n</i>-fold fractional derivative) is required to build Taylor expansions in terms of fractional derivatives. Such properties do not seem to appear in the literature. Furthermore, some new properties of the expansion coefficients are also shown together with some computational examples in Wolfram Mathematica.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00311-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00311-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了分数微积分中泰勒公式的某些方面,重点是卡普托定义的使用。此类公式由多项式展开式组成,其系数是在其起点求值的分数导数值乘以通过伽马函数确定的一些系数。分数导数的特性对展开式的系数影响很大。在本文的第一部分,我们回顾了目前可用的分数微积分公式,并特别关注卡普托导数。在第二部分中,我们将证明为什么需要序分数导数(即 n 倍分数导数)的概念来建立分数导数的泰勒展开式。这种性质在文献中似乎没有出现过。此外,我们还展示了扩展系数的一些新特性,以及在 Wolfram Mathematica 中的一些计算实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Taylor’s formulas in fractional calculus: overview and characterization for the Caputo derivative

On Taylor’s formulas in fractional calculus: overview and characterization for the Caputo derivative

This paper discusses some aspects of Taylor’s formulas in fractional calculus, focusing on use of Caputo’s definition. Such formulas consist of a polynomial expansion whose coefficients are values of the fractional derivative evaluated at its starting point multiplied by some coefficients determined through the Gamma function. The properties of fractional derivatives heavily affect the expansion’s coefficients. In the first part of the paper, we review the currently available formulas in fractional calculus with a particular focus on the Caputo derivative. In the second part, we prove why the notion of sequential fractional derivative (i.e., n-fold fractional derivative) is required to build Taylor expansions in terms of fractional derivatives. Such properties do not seem to appear in the literature. Furthermore, some new properties of the expansion coefficients are also shown together with some computational examples in Wolfram Mathematica.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信