通过林-路-尤曲率限定完全规则图的直径和特征值

IF 1 2区 数学 Q1 MATHEMATICS
Xueping Huang, Shiping Liu, Qing Xia
{"title":"通过林-路-尤曲率限定完全规则图的直径和特征值","authors":"Xueping Huang, Shiping Liu, Qing Xia","doi":"10.1007/s00493-024-00113-3","DOIUrl":null,"url":null,"abstract":"<p>An amply regular graph is a regular graph such that any two adjacent vertices have <span>\\(\\alpha \\)</span> common neighbors and any two vertices with distance 2 have <span>\\(\\beta \\)</span> common neighbors. We prove a sharp lower bound estimate for the Lin–Lu–Yau curvature of any amply regular graph with girth 3 and <span>\\(\\beta &gt;\\alpha \\)</span>. The proof involves new ideas relating discrete Ricci curvature with local matching properties: This includes a novel construction of a regular bipartite graph from the local structure and related distance estimates. As a consequence, we obtain sharp diameter and eigenvalue bounds for amply regular graphs.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounding the Diameter and Eigenvalues of Amply Regular Graphs via Lin–Lu–Yau Curvature\",\"authors\":\"Xueping Huang, Shiping Liu, Qing Xia\",\"doi\":\"10.1007/s00493-024-00113-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An amply regular graph is a regular graph such that any two adjacent vertices have <span>\\\\(\\\\alpha \\\\)</span> common neighbors and any two vertices with distance 2 have <span>\\\\(\\\\beta \\\\)</span> common neighbors. We prove a sharp lower bound estimate for the Lin–Lu–Yau curvature of any amply regular graph with girth 3 and <span>\\\\(\\\\beta &gt;\\\\alpha \\\\)</span>. The proof involves new ideas relating discrete Ricci curvature with local matching properties: This includes a novel construction of a regular bipartite graph from the local structure and related distance estimates. As a consequence, we obtain sharp diameter and eigenvalue bounds for amply regular graphs.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-024-00113-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00113-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

一个充裕正则图是这样一个正则图:任意两个相邻的顶点都有\(\alpha \)个共同的邻接点,任意两个距离为2的顶点都有\(\beta \)个共同的邻接点。我们证明了任何周长为 3 和 \(\beta >\alpha \) 的充分规则图的林-卢-尤曲率的一个尖锐的下界估计值。证明涉及离散里奇曲率与局部匹配特性相关的新想法:这包括从局部结构和相关的距离估计中构造出一个规则的二方图。因此,我们得到了充分规则图的尖锐直径和特征值边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bounding the Diameter and Eigenvalues of Amply Regular Graphs via Lin–Lu–Yau Curvature

Bounding the Diameter and Eigenvalues of Amply Regular Graphs via Lin–Lu–Yau Curvature

An amply regular graph is a regular graph such that any two adjacent vertices have \(\alpha \) common neighbors and any two vertices with distance 2 have \(\beta \) common neighbors. We prove a sharp lower bound estimate for the Lin–Lu–Yau curvature of any amply regular graph with girth 3 and \(\beta >\alpha \). The proof involves new ideas relating discrete Ricci curvature with local matching properties: This includes a novel construction of a regular bipartite graph from the local structure and related distance estimates. As a consequence, we obtain sharp diameter and eigenvalue bounds for amply regular graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信