通过视图深度采样从单张草图进行三维重建

Chenjian Gao, Xilin Wang, Qian Yu, Lu Sheng, Jing Zhang, Xiaoguang Han, Yi-Zhe Song, Dong Xu
{"title":"通过视图深度采样从单张草图进行三维重建","authors":"Chenjian Gao, Xilin Wang, Qian Yu, Lu Sheng, Jing Zhang, Xiaoguang Han, Yi-Zhe Song, Dong Xu","doi":"10.1109/TPAMI.2024.3424404","DOIUrl":null,"url":null,"abstract":"<p><p>Reconstructing a 3D shape based on a single sketch image is challenging due to the inherent sparsity and ambiguity present in sketches. Existing methods lose fine details when extracting features to predict 3D objects from sketches. Upon analyzing the 3D-to-2D projection process, we observe that the density map, characterizing the distribution of 2D point clouds, can serve as a proxy to facilitate the reconstruction process. In this work, we propose a novel sketch-based 3D reconstruction model named SketchSampler. It initiates the process by translating a sketch through an image translation network into a more informative 2D representation, which is then used to generate a density map. Subsequently, a two-stage probabilistic sampling process is employed to reconstruct a 3D point cloud: firstly, recovering the 2D points (i.e., the x and y coordinates) by sampling the density map; and secondly, predicting the depth (i.e., the z coordinate) by sampling the depth values along the ray determined by each 2D point. Additionally, we convert the reconstructed point cloud into a 3D mesh for wider applications. To reduce ambiguity, we incorporate hidden lines in sketches. Experimental results demonstrate that our proposed approach significantly outperforms other baseline methods.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Reconstruction from a Single Sketch via View-dependent Depth Sampling.\",\"authors\":\"Chenjian Gao, Xilin Wang, Qian Yu, Lu Sheng, Jing Zhang, Xiaoguang Han, Yi-Zhe Song, Dong Xu\",\"doi\":\"10.1109/TPAMI.2024.3424404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reconstructing a 3D shape based on a single sketch image is challenging due to the inherent sparsity and ambiguity present in sketches. Existing methods lose fine details when extracting features to predict 3D objects from sketches. Upon analyzing the 3D-to-2D projection process, we observe that the density map, characterizing the distribution of 2D point clouds, can serve as a proxy to facilitate the reconstruction process. In this work, we propose a novel sketch-based 3D reconstruction model named SketchSampler. It initiates the process by translating a sketch through an image translation network into a more informative 2D representation, which is then used to generate a density map. Subsequently, a two-stage probabilistic sampling process is employed to reconstruct a 3D point cloud: firstly, recovering the 2D points (i.e., the x and y coordinates) by sampling the density map; and secondly, predicting the depth (i.e., the z coordinate) by sampling the depth values along the ray determined by each 2D point. Additionally, we convert the reconstructed point cloud into a 3D mesh for wider applications. To reduce ambiguity, we incorporate hidden lines in sketches. Experimental results demonstrate that our proposed approach significantly outperforms other baseline methods.</p>\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPAMI.2024.3424404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2024.3424404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于草图固有的稀疏性和模糊性,根据单张草图图像重建三维形状具有挑战性。现有方法在从草图中提取特征来预测三维物体时会丢失一些细节。在分析三维到二维的投影过程时,我们观察到,表征二维点云分布的密度图可以作为一个代理来促进重建过程。在这项工作中,我们提出了一种名为 SketchSampler 的基于草图的新型三维重建模型。该模型通过图像转换网络将草图转换为信息量更大的二维表示,然后生成密度图。随后,采用两阶段概率采样过程来重建三维点云:首先,通过对密度图进行采样来恢复二维点(即 x 和 y 坐标);其次,通过对每个二维点确定的射线沿线的深度值进行采样来预测深度(即 z 坐标)。此外,我们还将重建的点云转换为三维网格,以便进行更广泛的应用。为了减少模糊性,我们在草图中加入了隐藏线。实验结果表明,我们提出的方法明显优于其他基准方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D Reconstruction from a Single Sketch via View-dependent Depth Sampling.

Reconstructing a 3D shape based on a single sketch image is challenging due to the inherent sparsity and ambiguity present in sketches. Existing methods lose fine details when extracting features to predict 3D objects from sketches. Upon analyzing the 3D-to-2D projection process, we observe that the density map, characterizing the distribution of 2D point clouds, can serve as a proxy to facilitate the reconstruction process. In this work, we propose a novel sketch-based 3D reconstruction model named SketchSampler. It initiates the process by translating a sketch through an image translation network into a more informative 2D representation, which is then used to generate a density map. Subsequently, a two-stage probabilistic sampling process is employed to reconstruct a 3D point cloud: firstly, recovering the 2D points (i.e., the x and y coordinates) by sampling the density map; and secondly, predicting the depth (i.e., the z coordinate) by sampling the depth values along the ray determined by each 2D point. Additionally, we convert the reconstructed point cloud into a 3D mesh for wider applications. To reduce ambiguity, we incorporate hidden lines in sketches. Experimental results demonstrate that our proposed approach significantly outperforms other baseline methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信