Jiao-Fei Wei, Fan Li, Jia-Wen Lin, Zi-Ang Dou, Shu-Qin Li, Jun Shen
{"title":"基于乳腺癌组织中 Reg IV 表达的新辅助化疗病理完全缓解模型的开发与验证:一项临床回顾性研究。","authors":"Jiao-Fei Wei, Fan Li, Jia-Wen Lin, Zi-Ang Dou, Shu-Qin Li, Jun Shen","doi":"10.1007/s12282-024-01609-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop and authenticate a neoadjuvant chemotherapy (NACT) pathological complete remission (pCR) model based on the expression of Reg IV within breast cancer tissues with the objective to provide clinical guidance for precise interventions.</p><p><strong>Method: </strong>Data relating to 104 patients undergoing NACT were collected. Variables derived from clinical information and pathological characteristics of patients were screened through logistic regression, random forest, and Xgboost methods to formulate predictive models. The validation and comparative assessment of these models were conducted to identify the optimal model, which was then visualized and tested.</p><p><strong>Result: </strong>Following the screening of variables and the establishment of multiple models based on these variables, comparative analyses were conducted using receiver operating characteristic (ROC) curves, calibration curves, as well as net reclassification improvement (NRI) and integrated discrimination improvement (IDI). Model 2 emerged as the most optimal, incorporating variables such as HER-2, ER, T-stage, Reg IV, and Treatment, among others. The area under the ROC curve (AUC) for Model 2 in the training dataset and test dataset was 0.837 (0.734-0.941) and 0.897 (0.775-1.00), respectively. Decision curve analysis (DCA) and clinical impact curve (CIC) further underscored the potential applications of the model in guiding clinical interventions for patients.</p><p><strong>Conclusion: </strong>The prediction of NACT pCR efficacy based on the expression of Reg IV in breast cancer tissue appears feasible; however, it requires further validation.</p>","PeriodicalId":56083,"journal":{"name":"Breast Cancer","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341653/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and validation of a neoadjuvant chemotherapy pathological complete remission model based on Reg IV expression in breast cancer tissues: a clinical retrospective study.\",\"authors\":\"Jiao-Fei Wei, Fan Li, Jia-Wen Lin, Zi-Ang Dou, Shu-Qin Li, Jun Shen\",\"doi\":\"10.1007/s12282-024-01609-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To develop and authenticate a neoadjuvant chemotherapy (NACT) pathological complete remission (pCR) model based on the expression of Reg IV within breast cancer tissues with the objective to provide clinical guidance for precise interventions.</p><p><strong>Method: </strong>Data relating to 104 patients undergoing NACT were collected. Variables derived from clinical information and pathological characteristics of patients were screened through logistic regression, random forest, and Xgboost methods to formulate predictive models. The validation and comparative assessment of these models were conducted to identify the optimal model, which was then visualized and tested.</p><p><strong>Result: </strong>Following the screening of variables and the establishment of multiple models based on these variables, comparative analyses were conducted using receiver operating characteristic (ROC) curves, calibration curves, as well as net reclassification improvement (NRI) and integrated discrimination improvement (IDI). Model 2 emerged as the most optimal, incorporating variables such as HER-2, ER, T-stage, Reg IV, and Treatment, among others. The area under the ROC curve (AUC) for Model 2 in the training dataset and test dataset was 0.837 (0.734-0.941) and 0.897 (0.775-1.00), respectively. Decision curve analysis (DCA) and clinical impact curve (CIC) further underscored the potential applications of the model in guiding clinical interventions for patients.</p><p><strong>Conclusion: </strong>The prediction of NACT pCR efficacy based on the expression of Reg IV in breast cancer tissue appears feasible; however, it requires further validation.</p>\",\"PeriodicalId\":56083,\"journal\":{\"name\":\"Breast Cancer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341653/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12282-024-01609-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"OBSTETRICS & GYNECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12282-024-01609-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
Development and validation of a neoadjuvant chemotherapy pathological complete remission model based on Reg IV expression in breast cancer tissues: a clinical retrospective study.
Objective: To develop and authenticate a neoadjuvant chemotherapy (NACT) pathological complete remission (pCR) model based on the expression of Reg IV within breast cancer tissues with the objective to provide clinical guidance for precise interventions.
Method: Data relating to 104 patients undergoing NACT were collected. Variables derived from clinical information and pathological characteristics of patients were screened through logistic regression, random forest, and Xgboost methods to formulate predictive models. The validation and comparative assessment of these models were conducted to identify the optimal model, which was then visualized and tested.
Result: Following the screening of variables and the establishment of multiple models based on these variables, comparative analyses were conducted using receiver operating characteristic (ROC) curves, calibration curves, as well as net reclassification improvement (NRI) and integrated discrimination improvement (IDI). Model 2 emerged as the most optimal, incorporating variables such as HER-2, ER, T-stage, Reg IV, and Treatment, among others. The area under the ROC curve (AUC) for Model 2 in the training dataset and test dataset was 0.837 (0.734-0.941) and 0.897 (0.775-1.00), respectively. Decision curve analysis (DCA) and clinical impact curve (CIC) further underscored the potential applications of the model in guiding clinical interventions for patients.
Conclusion: The prediction of NACT pCR efficacy based on the expression of Reg IV in breast cancer tissue appears feasible; however, it requires further validation.
期刊介绍:
Breast Cancer, the official journal of the Japanese Breast Cancer Society, publishes articles that contribute to progress in the field, in basic or translational research and also in clinical research, seeking to develop a new focus and new perspectives for all who are concerned with breast cancer. The journal welcomes all original articles describing clinical and epidemiological studies and laboratory investigations regarding breast cancer and related diseases. The journal will consider five types of articles: editorials, review articles, original articles, case reports, and rapid communications. Although editorials and review articles will principally be solicited by the editors, they can also be submitted for peer review, as in the case of original articles. The journal provides the best of up-to-date information on breast cancer, presenting readers with high-impact, original work focusing on pivotal issues.