用人工智能方法对人体组织电磁图像中的糖原颗粒进行体积量化。

IF 3.3 2区 医学 Q1 PHYSIOLOGY
Journal of General Physiology Pub Date : 2024-09-02 Epub Date: 2024-07-09 DOI:10.1085/jgp.202413595
Eduardo Ríos, Montserrat Samsó, Lourdes C Figueroa, Carlo Manno, Eshwar R Tammineni, Lucas Rios Giordano, Sheila Riazi
{"title":"用人工智能方法对人体组织电磁图像中的糖原颗粒进行体积量化。","authors":"Eduardo Ríos, Montserrat Samsó, Lourdes C Figueroa, Carlo Manno, Eshwar R Tammineni, Lucas Rios Giordano, Sheila Riazi","doi":"10.1085/jgp.202413595","DOIUrl":null,"url":null,"abstract":"<p><p>Skeletal muscle, the major processor of dietary glucose, stores it in myriad glycogen granules. Their numbers vary with cellular location and physiological and pathophysiological states. AI models were developed to derive granular glycogen content from electron-microscopic images of human muscle. Two UNet-type semantic segmentation models were built: \"Locations\" classified pixels as belonging to different regions in the cell; \"Granules\" identified pixels within granules. From their joint output, a pixel fraction pf was calculated for images from patients positive (MHS) or negative (MHN) to a test for malignant hyperthermia susceptibility. pf was used to derive vf, the volume fraction occupied by granules. The relationship vf (pf) was derived from a simulation of volumes (\"baskets\") containing virtual granules at realistic concentrations. The simulated granules had diameters matching the real ones, which were measured by adapting a utility devised for calcium sparks. Applying this relationship to the pf measured in images, vf was calculated for every region and patient, and from them a glycogen concentration. The intermyofibrillar spaces and the sarcomeric I band had the highest granular content. The measured glycogen concentration was low enough to allow for a substantial presence of non-granular glycogen. The MHS samples had an approximately threefold lower concentration (significant in a hierarchical test), consistent with earlier evidence of diminished glucose processing in MHS. The AI models and the approach to infer three-dimensional magnitudes from two-dimensional images should be adaptable to other tasks on a variety of images from patients and animal models and different disease conditions.</p>","PeriodicalId":54828,"journal":{"name":"Journal of General Physiology","volume":"156 9","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233403/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence approaches to the volumetric quantification of glycogen granules in EM images of human tissue.\",\"authors\":\"Eduardo Ríos, Montserrat Samsó, Lourdes C Figueroa, Carlo Manno, Eshwar R Tammineni, Lucas Rios Giordano, Sheila Riazi\",\"doi\":\"10.1085/jgp.202413595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skeletal muscle, the major processor of dietary glucose, stores it in myriad glycogen granules. Their numbers vary with cellular location and physiological and pathophysiological states. AI models were developed to derive granular glycogen content from electron-microscopic images of human muscle. Two UNet-type semantic segmentation models were built: \\\"Locations\\\" classified pixels as belonging to different regions in the cell; \\\"Granules\\\" identified pixels within granules. From their joint output, a pixel fraction pf was calculated for images from patients positive (MHS) or negative (MHN) to a test for malignant hyperthermia susceptibility. pf was used to derive vf, the volume fraction occupied by granules. The relationship vf (pf) was derived from a simulation of volumes (\\\"baskets\\\") containing virtual granules at realistic concentrations. The simulated granules had diameters matching the real ones, which were measured by adapting a utility devised for calcium sparks. Applying this relationship to the pf measured in images, vf was calculated for every region and patient, and from them a glycogen concentration. The intermyofibrillar spaces and the sarcomeric I band had the highest granular content. The measured glycogen concentration was low enough to allow for a substantial presence of non-granular glycogen. The MHS samples had an approximately threefold lower concentration (significant in a hierarchical test), consistent with earlier evidence of diminished glucose processing in MHS. The AI models and the approach to infer three-dimensional magnitudes from two-dimensional images should be adaptable to other tasks on a variety of images from patients and animal models and different disease conditions.</p>\",\"PeriodicalId\":54828,\"journal\":{\"name\":\"Journal of General Physiology\",\"volume\":\"156 9\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233403/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of General Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1085/jgp.202413595\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1085/jgp.202413595","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

骨骼肌是膳食葡萄糖的主要处理者,它将葡萄糖储存在无数的糖原颗粒中。它们的数量随细胞位置、生理和病理生理状态而变化。我们开发了人工智能模型,以便从人体肌肉的电子显微镜图像中得出糖原颗粒的含量。建立了两个 UNet 类型的语义分割模型:"位置 "将像素划分为细胞中的不同区域;"颗粒 "识别颗粒内的像素。根据它们的联合输出,计算出恶性高热惊厥易感性测试阳性(MHS)或阴性(MHN)患者图像的像素分数 pf。vf (pf)的关系是通过模拟含有实际浓度的虚拟颗粒的体积("篮子")得出的。模拟颗粒的直径与真实颗粒的直径一致,而真实颗粒的直径是通过调整钙火花设计的实用程序测量的。将这种关系应用于图像中测量的 pf,就能计算出每个区域和患者的 vf,并从中计算出糖原浓度。肌纤维间隙和肉瘤 I 带的颗粒含量最高。测得的糖原浓度较低,足以说明存在大量非颗粒状糖原。MHS 样本中的糖原浓度大约低三倍(在分层检验中具有显著性),这与早先有证据表明 MHS 中葡萄糖处理能力减弱是一致的。人工智能模型和从二维图像推断三维大小的方法应能适用于病人、动物模型和不同疾病情况下各种图像的其他任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence approaches to the volumetric quantification of glycogen granules in EM images of human tissue.

Skeletal muscle, the major processor of dietary glucose, stores it in myriad glycogen granules. Their numbers vary with cellular location and physiological and pathophysiological states. AI models were developed to derive granular glycogen content from electron-microscopic images of human muscle. Two UNet-type semantic segmentation models were built: "Locations" classified pixels as belonging to different regions in the cell; "Granules" identified pixels within granules. From their joint output, a pixel fraction pf was calculated for images from patients positive (MHS) or negative (MHN) to a test for malignant hyperthermia susceptibility. pf was used to derive vf, the volume fraction occupied by granules. The relationship vf (pf) was derived from a simulation of volumes ("baskets") containing virtual granules at realistic concentrations. The simulated granules had diameters matching the real ones, which were measured by adapting a utility devised for calcium sparks. Applying this relationship to the pf measured in images, vf was calculated for every region and patient, and from them a glycogen concentration. The intermyofibrillar spaces and the sarcomeric I band had the highest granular content. The measured glycogen concentration was low enough to allow for a substantial presence of non-granular glycogen. The MHS samples had an approximately threefold lower concentration (significant in a hierarchical test), consistent with earlier evidence of diminished glucose processing in MHS. The AI models and the approach to infer three-dimensional magnitudes from two-dimensional images should be adaptable to other tasks on a variety of images from patients and animal models and different disease conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
10.50%
发文量
88
审稿时长
6-12 weeks
期刊介绍: General physiology is the study of biological mechanisms through analytical investigations, which decipher the molecular and cellular mechanisms underlying biological function at all levels of organization. The mission of Journal of General Physiology (JGP) is to publish mechanistic and quantitative molecular and cellular physiology of the highest quality, to provide a best-in-class author experience, and to nurture future generations of independent researchers. The major emphasis is on physiological problems at the cellular and molecular level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信