Nate Korth, Qinnan Yang, Mallory J Van Haute, Michael C Tross, Bo Peng, Nikee Shrestha, Mackenzie Zwiener-Malcom, Ravi V Mural, James C Schnable, Andrew K Benson
{"title":"高粱多样性荟萃分析中影响农艺学和人类肠道微生物组性状的基因组共定位变异。","authors":"Nate Korth, Qinnan Yang, Mallory J Van Haute, Michael C Tross, Bo Peng, Nikee Shrestha, Mackenzie Zwiener-Malcom, Ravi V Mural, James C Schnable, Andrew K Benson","doi":"10.1093/g3journal/jkae145","DOIUrl":null,"url":null,"abstract":"<p><p>Substantial functional metabolic diversity exists within species of cultivated grain crops that directly or indirectly provide more than half of all calories consumed by humans around the globe. While such diversity is the molecular currency used for improving agronomic traits, diversity is poorly characterized for its effects on human nutrition and utilization by gut microbes. Moreover, we know little about agronomic traits' potential tradeoffs and pleiotropic effects on human nutritional traits. Here, we applied a quantitative genetics approach using a meta-analysis and parallel genome-wide association studies of Sorghum bicolor traits describing changes in the composition and function of human gut microbe communities, and any of 200 sorghum seed and agronomic traits across a diverse sorghum population to identify associated genetic variants. A total of 15 multiple-effect loci (MEL) were initially found where different alleles in the sorghum genome produced changes in seed that affected the abundance of multiple bacterial taxa across 2 human microbiomes in automated in vitro fermentations. Next, parallel genome-wide studies conducted for seed, biochemical, and agronomic traits in the same population identified significant associations within the boundaries of 13/15 MEL for microbiome traits. In several instances, the colocalization of variation affecting gut microbiome and agronomic traits provided hypotheses for causal mechanisms through which variation could affect both agronomic traits and human gut microbes. This work demonstrates that genetic factors affecting agronomic traits in sorghum seed can also drive significant effects on human gut microbes, particularly bacterial taxa considered beneficial. Understanding these pleiotropic relationships will inform future strategies for crop improvement toward yield, sustainability, and human health.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373648/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genomic co-localization of variation affecting agronomic and human gut microbiome traits in a meta-analysis of diverse sorghum.\",\"authors\":\"Nate Korth, Qinnan Yang, Mallory J Van Haute, Michael C Tross, Bo Peng, Nikee Shrestha, Mackenzie Zwiener-Malcom, Ravi V Mural, James C Schnable, Andrew K Benson\",\"doi\":\"10.1093/g3journal/jkae145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Substantial functional metabolic diversity exists within species of cultivated grain crops that directly or indirectly provide more than half of all calories consumed by humans around the globe. While such diversity is the molecular currency used for improving agronomic traits, diversity is poorly characterized for its effects on human nutrition and utilization by gut microbes. Moreover, we know little about agronomic traits' potential tradeoffs and pleiotropic effects on human nutritional traits. Here, we applied a quantitative genetics approach using a meta-analysis and parallel genome-wide association studies of Sorghum bicolor traits describing changes in the composition and function of human gut microbe communities, and any of 200 sorghum seed and agronomic traits across a diverse sorghum population to identify associated genetic variants. A total of 15 multiple-effect loci (MEL) were initially found where different alleles in the sorghum genome produced changes in seed that affected the abundance of multiple bacterial taxa across 2 human microbiomes in automated in vitro fermentations. Next, parallel genome-wide studies conducted for seed, biochemical, and agronomic traits in the same population identified significant associations within the boundaries of 13/15 MEL for microbiome traits. In several instances, the colocalization of variation affecting gut microbiome and agronomic traits provided hypotheses for causal mechanisms through which variation could affect both agronomic traits and human gut microbes. This work demonstrates that genetic factors affecting agronomic traits in sorghum seed can also drive significant effects on human gut microbes, particularly bacterial taxa considered beneficial. Understanding these pleiotropic relationships will inform future strategies for crop improvement toward yield, sustainability, and human health.</p>\",\"PeriodicalId\":12468,\"journal\":{\"name\":\"G3: Genes|Genomes|Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373648/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"G3: Genes|Genomes|Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/g3journal/jkae145\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae145","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Genomic co-localization of variation affecting agronomic and human gut microbiome traits in a meta-analysis of diverse sorghum.
Substantial functional metabolic diversity exists within species of cultivated grain crops that directly or indirectly provide more than half of all calories consumed by humans around the globe. While such diversity is the molecular currency used for improving agronomic traits, diversity is poorly characterized for its effects on human nutrition and utilization by gut microbes. Moreover, we know little about agronomic traits' potential tradeoffs and pleiotropic effects on human nutritional traits. Here, we applied a quantitative genetics approach using a meta-analysis and parallel genome-wide association studies of Sorghum bicolor traits describing changes in the composition and function of human gut microbe communities, and any of 200 sorghum seed and agronomic traits across a diverse sorghum population to identify associated genetic variants. A total of 15 multiple-effect loci (MEL) were initially found where different alleles in the sorghum genome produced changes in seed that affected the abundance of multiple bacterial taxa across 2 human microbiomes in automated in vitro fermentations. Next, parallel genome-wide studies conducted for seed, biochemical, and agronomic traits in the same population identified significant associations within the boundaries of 13/15 MEL for microbiome traits. In several instances, the colocalization of variation affecting gut microbiome and agronomic traits provided hypotheses for causal mechanisms through which variation could affect both agronomic traits and human gut microbes. This work demonstrates that genetic factors affecting agronomic traits in sorghum seed can also drive significant effects on human gut microbes, particularly bacterial taxa considered beneficial. Understanding these pleiotropic relationships will inform future strategies for crop improvement toward yield, sustainability, and human health.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.