Christian E. Rusbjerg-Weberskov , Anne Kruse Hollensen , Christian Kroun Damgaard , Marianne Bengtson Løvendorf , Lone Skov , Jan J. Enghild , Nadia Sukusu Nielsen
{"title":"绘制特应性皮炎和体外哮喘模型中的Periostin剪接同工酶--利用质谱法和RT-qPCR进行的多平台分析。","authors":"Christian E. Rusbjerg-Weberskov , Anne Kruse Hollensen , Christian Kroun Damgaard , Marianne Bengtson Løvendorf , Lone Skov , Jan J. Enghild , Nadia Sukusu Nielsen","doi":"10.1016/j.bbapap.2024.141031","DOIUrl":null,"url":null,"abstract":"<div><p>Periostin is a matricellular protein known to be alternatively spliced to produce ten isoforms with a molecular weight of 78–91 kDa. Within the extracellular matrix, periostin attaches to cell surfaces to induce signaling <em>via</em> integrin-binding and actively participates in fibrillogenesis, orchestrating the arrangement of collagen in the extracellular environment. In atopic diseases such as atopic dermatitis (AD) and asthma, periostin is known to participate in driving the disease-causing type 2 inflammation. The periostin isoforms expressed in these diseases and the implication of the alternative splicing events are unknown. Here, we present two universal assays to map the expression of periostin isoforms at the mRNA (RT-qPCR) and protein (PRM-based mass spectrometry) levels. We use these assays to study the splicing profile of periostin in AD lesions as well as in <em>in vitro</em> models of AD and asthma. In these conditions, periostin displayed overexpression with isoforms 3 and 5 standing out as highly overexpressed. Notably, isoforms 9 and 10 exhibited a divergent pattern relative to the remaining isoforms. Isoforms 9 and 10 are often overlooked in periostin research and this paper presents the first evidence of their expression at the protein level. This underlines the necessity to include isoforms 9 and 10 in future research addressing periostin splice isoforms. The assays presented in this paper hold the potential to improve our insight into the splicing profile of periostin in tissues and diseases of interest. The application of these assays to AD lesions and <em>in vitro</em> models demonstrated their potential for identifying isoforms of particular significance, warranting a further in-depth investigation.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1570963924000384/pdfft?md5=c12be11dda803cdf95887f728e83f8b0&pid=1-s2.0-S1570963924000384-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Mapping the Periostin splice isoforms in atopic dermatitis and an in vitro asthma model – A multi-platform analysis using mass spectrometry and RT-qPCR\",\"authors\":\"Christian E. Rusbjerg-Weberskov , Anne Kruse Hollensen , Christian Kroun Damgaard , Marianne Bengtson Løvendorf , Lone Skov , Jan J. Enghild , Nadia Sukusu Nielsen\",\"doi\":\"10.1016/j.bbapap.2024.141031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Periostin is a matricellular protein known to be alternatively spliced to produce ten isoforms with a molecular weight of 78–91 kDa. Within the extracellular matrix, periostin attaches to cell surfaces to induce signaling <em>via</em> integrin-binding and actively participates in fibrillogenesis, orchestrating the arrangement of collagen in the extracellular environment. In atopic diseases such as atopic dermatitis (AD) and asthma, periostin is known to participate in driving the disease-causing type 2 inflammation. The periostin isoforms expressed in these diseases and the implication of the alternative splicing events are unknown. Here, we present two universal assays to map the expression of periostin isoforms at the mRNA (RT-qPCR) and protein (PRM-based mass spectrometry) levels. We use these assays to study the splicing profile of periostin in AD lesions as well as in <em>in vitro</em> models of AD and asthma. In these conditions, periostin displayed overexpression with isoforms 3 and 5 standing out as highly overexpressed. Notably, isoforms 9 and 10 exhibited a divergent pattern relative to the remaining isoforms. Isoforms 9 and 10 are often overlooked in periostin research and this paper presents the first evidence of their expression at the protein level. This underlines the necessity to include isoforms 9 and 10 in future research addressing periostin splice isoforms. The assays presented in this paper hold the potential to improve our insight into the splicing profile of periostin in tissues and diseases of interest. The application of these assays to AD lesions and <em>in vitro</em> models demonstrated their potential for identifying isoforms of particular significance, warranting a further in-depth investigation.</p></div>\",\"PeriodicalId\":8760,\"journal\":{\"name\":\"Biochimica et biophysica acta. Proteins and proteomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1570963924000384/pdfft?md5=c12be11dda803cdf95887f728e83f8b0&pid=1-s2.0-S1570963924000384-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Proteins and proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570963924000384\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Proteins and proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963924000384","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mapping the Periostin splice isoforms in atopic dermatitis and an in vitro asthma model – A multi-platform analysis using mass spectrometry and RT-qPCR
Periostin is a matricellular protein known to be alternatively spliced to produce ten isoforms with a molecular weight of 78–91 kDa. Within the extracellular matrix, periostin attaches to cell surfaces to induce signaling via integrin-binding and actively participates in fibrillogenesis, orchestrating the arrangement of collagen in the extracellular environment. In atopic diseases such as atopic dermatitis (AD) and asthma, periostin is known to participate in driving the disease-causing type 2 inflammation. The periostin isoforms expressed in these diseases and the implication of the alternative splicing events are unknown. Here, we present two universal assays to map the expression of periostin isoforms at the mRNA (RT-qPCR) and protein (PRM-based mass spectrometry) levels. We use these assays to study the splicing profile of periostin in AD lesions as well as in in vitro models of AD and asthma. In these conditions, periostin displayed overexpression with isoforms 3 and 5 standing out as highly overexpressed. Notably, isoforms 9 and 10 exhibited a divergent pattern relative to the remaining isoforms. Isoforms 9 and 10 are often overlooked in periostin research and this paper presents the first evidence of their expression at the protein level. This underlines the necessity to include isoforms 9 and 10 in future research addressing periostin splice isoforms. The assays presented in this paper hold the potential to improve our insight into the splicing profile of periostin in tissues and diseases of interest. The application of these assays to AD lesions and in vitro models demonstrated their potential for identifying isoforms of particular significance, warranting a further in-depth investigation.
期刊介绍:
BBA Proteins and Proteomics covers protein structure conformation and dynamics; protein folding; protein-ligand interactions; enzyme mechanisms, models and kinetics; protein physical properties and spectroscopy; and proteomics and bioinformatics analyses of protein structure, protein function, or protein regulation.