{"title":"封面图片,第 4 卷第 2 号,2024 年 6 月","authors":"","doi":"10.1002/msd2.12120","DOIUrl":null,"url":null,"abstract":"<p><b>Cover Caption</b>: A velocity-based space–time finite element method (v-ST/FEM) is presented for analyzing dynamic soil–structure interaction in earth structures such as dams, tunnels, and embankments subjected to vibrational loading from high-speed trains, road traffic, underground explosions, and earthquakes. The method incorporates the Lysmer–Kuhlemeyer viscous boundary conditions to truncate the unbounded soil domain and includes time-dependent boundary conditions to model energy flow. The v-ST/FEM is third-order accurate in time. It introduces negligible numerical dispersion error, thus enabling precise computation of the dynamic responses of soils and structures during long-duration earthquake motions.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.12120","citationCount":"0","resultStr":"{\"title\":\"Cover Image, Volume 4, Number 2, June 2024\",\"authors\":\"\",\"doi\":\"10.1002/msd2.12120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Cover Caption</b>: A velocity-based space–time finite element method (v-ST/FEM) is presented for analyzing dynamic soil–structure interaction in earth structures such as dams, tunnels, and embankments subjected to vibrational loading from high-speed trains, road traffic, underground explosions, and earthquakes. The method incorporates the Lysmer–Kuhlemeyer viscous boundary conditions to truncate the unbounded soil domain and includes time-dependent boundary conditions to model energy flow. The v-ST/FEM is third-order accurate in time. It introduces negligible numerical dispersion error, thus enabling precise computation of the dynamic responses of soils and structures during long-duration earthquake motions.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":60486,\"journal\":{\"name\":\"国际机械系统动力学学报(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.12120\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"国际机械系统动力学学报(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/msd2.12120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"国际机械系统动力学学报(英文)","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/msd2.12120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Cover Caption: A velocity-based space–time finite element method (v-ST/FEM) is presented for analyzing dynamic soil–structure interaction in earth structures such as dams, tunnels, and embankments subjected to vibrational loading from high-speed trains, road traffic, underground explosions, and earthquakes. The method incorporates the Lysmer–Kuhlemeyer viscous boundary conditions to truncate the unbounded soil domain and includes time-dependent boundary conditions to model energy flow. The v-ST/FEM is third-order accurate in time. It introduces negligible numerical dispersion error, thus enabling precise computation of the dynamic responses of soils and structures during long-duration earthquake motions.