利用稳健神经网络和夏普利加法解释分析预测出行方式选择

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Li Tang, Chuanli Tang, Qi Fu, Changxi Ma
{"title":"利用稳健神经网络和夏普利加法解释分析预测出行方式选择","authors":"Li Tang,&nbsp;Chuanli Tang,&nbsp;Qi Fu,&nbsp;Changxi Ma","doi":"10.1049/itr2.12514","DOIUrl":null,"url":null,"abstract":"<p>Predicting and understanding travellers’ mode choices is crucial to developing urban transportation systems and formulating traffic demand management strategies. Machine learning (ML) methods have been widely used as promising alternatives to traditional discrete choice models owing to their high prediction accuracy. However, a significant body of ML methods, especially the branch of neural networks, is constrained by overfitting and a lack of model interpretability. This study employs a neural network with feature selection for predicting travel mode choices and Shapley additive explanations (SHAP) analysis for model interpretation. A dataset collected in Chengdu, China was used for experimentation. The results reveal that the neural network achieves commendable prediction performance, with a 12% improvement over the traditional multinomial logit model. Also, feature selection using a combined result from two embedded methods can alleviate the overfitting tendency of the neural network, while establishing a more robust model against redundant or unnecessary variables. Additionally, the SHAP analysis identifies factors such as travel expenditure, age, driving experience, number of cars owned, individual monthly income, and trip purpose as significant features in our dataset. The heterogeneity of mode choice behaviour is significant among demographic groups, including different age, car ownership, and income levels.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 7","pages":"1339-1354"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12514","citationCount":"0","resultStr":"{\"title\":\"Predicting travel mode choice with a robust neural network and Shapley additive explanations analysis\",\"authors\":\"Li Tang,&nbsp;Chuanli Tang,&nbsp;Qi Fu,&nbsp;Changxi Ma\",\"doi\":\"10.1049/itr2.12514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Predicting and understanding travellers’ mode choices is crucial to developing urban transportation systems and formulating traffic demand management strategies. Machine learning (ML) methods have been widely used as promising alternatives to traditional discrete choice models owing to their high prediction accuracy. However, a significant body of ML methods, especially the branch of neural networks, is constrained by overfitting and a lack of model interpretability. This study employs a neural network with feature selection for predicting travel mode choices and Shapley additive explanations (SHAP) analysis for model interpretation. A dataset collected in Chengdu, China was used for experimentation. The results reveal that the neural network achieves commendable prediction performance, with a 12% improvement over the traditional multinomial logit model. Also, feature selection using a combined result from two embedded methods can alleviate the overfitting tendency of the neural network, while establishing a more robust model against redundant or unnecessary variables. Additionally, the SHAP analysis identifies factors such as travel expenditure, age, driving experience, number of cars owned, individual monthly income, and trip purpose as significant features in our dataset. The heterogeneity of mode choice behaviour is significant among demographic groups, including different age, car ownership, and income levels.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"18 7\",\"pages\":\"1339-1354\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12514\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12514\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12514","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

预测和了解旅行者的模式选择对于开发城市交通系统和制定交通需求管理策略至关重要。机器学习(ML)方法因其预测准确性高而被广泛应用,有望替代传统的离散选择模型。然而,大量的 ML 方法,尤其是神经网络分支,都受到过度拟合和缺乏模型可解释性的限制。本研究采用带有特征选择的神经网络来预测出行方式选择,并采用夏普利加法解释(SHAP)分析来解释模型。实验使用了在中国成都收集的数据集。结果表明,神经网络的预测性能值得称赞,比传统的多二项对数模型提高了 12%。同时,利用两种嵌入方法的综合结果进行特征选择,可以缓解神经网络的过拟合趋势,同时建立一个更稳健的模型,避免冗余或不必要的变量。此外,SHAP 分析还确定了旅行支出、年龄、驾驶经验、拥有汽车数量、个人月收入和旅行目的等因素是我们数据集中的重要特征。在不同的人口群体中,包括不同年龄、汽车拥有量和收入水平在内,模式选择行为的异质性非常明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting travel mode choice with a robust neural network and Shapley additive explanations analysis

Predicting travel mode choice with a robust neural network and Shapley additive explanations analysis

Predicting and understanding travellers’ mode choices is crucial to developing urban transportation systems and formulating traffic demand management strategies. Machine learning (ML) methods have been widely used as promising alternatives to traditional discrete choice models owing to their high prediction accuracy. However, a significant body of ML methods, especially the branch of neural networks, is constrained by overfitting and a lack of model interpretability. This study employs a neural network with feature selection for predicting travel mode choices and Shapley additive explanations (SHAP) analysis for model interpretation. A dataset collected in Chengdu, China was used for experimentation. The results reveal that the neural network achieves commendable prediction performance, with a 12% improvement over the traditional multinomial logit model. Also, feature selection using a combined result from two embedded methods can alleviate the overfitting tendency of the neural network, while establishing a more robust model against redundant or unnecessary variables. Additionally, the SHAP analysis identifies factors such as travel expenditure, age, driving experience, number of cars owned, individual monthly income, and trip purpose as significant features in our dataset. The heterogeneity of mode choice behaviour is significant among demographic groups, including different age, car ownership, and income levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信