Michał Biegała, Marcin Brodecki, Krystian Skoczylas, Teresa Jakubowska, Joanna Domienik-Andrzejewska
{"title":"从儿科患者护理人员所受散射电离辐射的角度分析计算机断层扫描仪周围的剂量分布。","authors":"Michał Biegała, Marcin Brodecki, Krystian Skoczylas, Teresa Jakubowska, Joanna Domienik-Andrzejewska","doi":"10.13075/ijomeh.1896.02386","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>During computed tomography (CT), a large amount of ionizing radiation is emitted to ensure high quality of the obtained radiological image. This study measured the dose distribution around the CT scanner and the exposure of people staying near the CT scanner during the examination.</p><p><strong>Material and methods: </strong>The measurements used an anthropomorphic phantom to assess human exposure to ionizing radiation. The probability of inducing leukemia and other cancers as a result of absorbing doses recorded around the CT device was also calculated.</p><p><strong>Results: </strong>The highest exposure to scattered radiation in the proximity of the CT scanner is recorded at the gantry of the tomograph, i.e., 55.7 μGy, and the lowest, below lower detection limit of 6 μGy at the end of the diagnostic table. The whole-body detector placed on the anthropomorphic phantom located at the diagnostic table right next to the CT gantry recorded 59.5 μSv and at the end of the table 1.5 μSv. The average doses to the lenses in these locations were: 32.1 μSv and 2.9 μSv, respectively.</p><p><strong>Conclusions: </strong>The probability of induction of leukemia or other types of cancer is low, but the need for people to stay in the examination room during a CT examination should be limited to the necessary minimum. Int J Occup Med Environ Health. 2024;37(3):326-34.</p>","PeriodicalId":14173,"journal":{"name":"International journal of occupational medicine and environmental health","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424147/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analysis of dose distribution around a computed tomography scanner in terms of exposure to scattered ionizing radiation of caregivers of pediatric patients.\",\"authors\":\"Michał Biegała, Marcin Brodecki, Krystian Skoczylas, Teresa Jakubowska, Joanna Domienik-Andrzejewska\",\"doi\":\"10.13075/ijomeh.1896.02386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>During computed tomography (CT), a large amount of ionizing radiation is emitted to ensure high quality of the obtained radiological image. This study measured the dose distribution around the CT scanner and the exposure of people staying near the CT scanner during the examination.</p><p><strong>Material and methods: </strong>The measurements used an anthropomorphic phantom to assess human exposure to ionizing radiation. The probability of inducing leukemia and other cancers as a result of absorbing doses recorded around the CT device was also calculated.</p><p><strong>Results: </strong>The highest exposure to scattered radiation in the proximity of the CT scanner is recorded at the gantry of the tomograph, i.e., 55.7 μGy, and the lowest, below lower detection limit of 6 μGy at the end of the diagnostic table. The whole-body detector placed on the anthropomorphic phantom located at the diagnostic table right next to the CT gantry recorded 59.5 μSv and at the end of the table 1.5 μSv. The average doses to the lenses in these locations were: 32.1 μSv and 2.9 μSv, respectively.</p><p><strong>Conclusions: </strong>The probability of induction of leukemia or other types of cancer is low, but the need for people to stay in the examination room during a CT examination should be limited to the necessary minimum. Int J Occup Med Environ Health. 2024;37(3):326-34.</p>\",\"PeriodicalId\":14173,\"journal\":{\"name\":\"International journal of occupational medicine and environmental health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424147/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of occupational medicine and environmental health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.13075/ijomeh.1896.02386\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of occupational medicine and environmental health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.13075/ijomeh.1896.02386","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Analysis of dose distribution around a computed tomography scanner in terms of exposure to scattered ionizing radiation of caregivers of pediatric patients.
Objectives: During computed tomography (CT), a large amount of ionizing radiation is emitted to ensure high quality of the obtained radiological image. This study measured the dose distribution around the CT scanner and the exposure of people staying near the CT scanner during the examination.
Material and methods: The measurements used an anthropomorphic phantom to assess human exposure to ionizing radiation. The probability of inducing leukemia and other cancers as a result of absorbing doses recorded around the CT device was also calculated.
Results: The highest exposure to scattered radiation in the proximity of the CT scanner is recorded at the gantry of the tomograph, i.e., 55.7 μGy, and the lowest, below lower detection limit of 6 μGy at the end of the diagnostic table. The whole-body detector placed on the anthropomorphic phantom located at the diagnostic table right next to the CT gantry recorded 59.5 μSv and at the end of the table 1.5 μSv. The average doses to the lenses in these locations were: 32.1 μSv and 2.9 μSv, respectively.
Conclusions: The probability of induction of leukemia or other types of cancer is low, but the need for people to stay in the examination room during a CT examination should be limited to the necessary minimum. Int J Occup Med Environ Health. 2024;37(3):326-34.
期刊介绍:
The Journal is dedicated to present the contemporary research in occupational and environmental health from all over the world. It publishes works concerning: occupational and environmental: medicine, epidemiology, hygiene and toxicology; work physiology and ergonomics, musculoskeletal problems; psychosocial factors at work, work-related mental problems, aging, work ability and return to work; working hours, shift work; reproductive factors and endocrine disruptors; radiation, ionizing and non-ionizing health effects; agricultural hazards; work safety and injury and occupational health service; climate change and its effects on health; omics, genetics and epigenetics in occupational and environmental health; health effects of exposure to nanoparticles and nanotechnology products; human biomarkers in occupational and environmental health, intervention studies, clinical sciences’ achievements with potential to improve occupational and environmental health.