Kriti Kalpana, Chandrika Rao, Stefan Semrau, Bin Zhang, Scott Noggle, Valentina Fossati
{"title":"利用人类诱导多能干细胞 (iPSC) 衍生的皮质器官和小胶质细胞生成神经免疫组装体。","authors":"Kriti Kalpana, Chandrika Rao, Stefan Semrau, Bin Zhang, Scott Noggle, Valentina Fossati","doi":"10.1007/7651_2024_554","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of brain organoids has revolutionized our understanding of neurodevelopment and neurological diseases by providing an in vitro model system that recapitulates key aspects of human brain development. However, conventional organoid protocols often overlook the role of microglia, the resident immune cells of the central nervous system. Microglia dysfunction is implicated in various neurological disorders, highlighting the need for their inclusion in organoid models. Here, we present a novel method for generating neuroimmune assembloids using human-induced pluripotent stem cell (iPSC)-derived cortical organoids and microglia. Building upon our previous work generating myelinating cortical organoids, we extend our methodology to include the integration of microglia, ensuring their long-term survival and maturation within the organoids. We describe two integration methods: one involving direct addition of microglia progenitors to the organoids and an alternative approach where microglia and dissociated neuronal progenitors are aggregated together in a defined ratio. To facilitate downstream analysis, we also describe a dissociation protocol for single-cell RNA sequencing (scRNA-seq) and provide guidance on fixation, cryosectioning, and immunostaining of assembloid structures. Overall, our protocol provides a comprehensive framework for generating neuroimmune assembloids, offering researchers a valuable tool for studying the interactions between neural cell types and immune cells in the context of neurological diseases.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating Neuroimmune Assembloids Using Human Induced Pluripotent Stem Cell (iPSC)-Derived Cortical Organoids and Microglia.\",\"authors\":\"Kriti Kalpana, Chandrika Rao, Stefan Semrau, Bin Zhang, Scott Noggle, Valentina Fossati\",\"doi\":\"10.1007/7651_2024_554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emergence of brain organoids has revolutionized our understanding of neurodevelopment and neurological diseases by providing an in vitro model system that recapitulates key aspects of human brain development. However, conventional organoid protocols often overlook the role of microglia, the resident immune cells of the central nervous system. Microglia dysfunction is implicated in various neurological disorders, highlighting the need for their inclusion in organoid models. Here, we present a novel method for generating neuroimmune assembloids using human-induced pluripotent stem cell (iPSC)-derived cortical organoids and microglia. Building upon our previous work generating myelinating cortical organoids, we extend our methodology to include the integration of microglia, ensuring their long-term survival and maturation within the organoids. We describe two integration methods: one involving direct addition of microglia progenitors to the organoids and an alternative approach where microglia and dissociated neuronal progenitors are aggregated together in a defined ratio. To facilitate downstream analysis, we also describe a dissociation protocol for single-cell RNA sequencing (scRNA-seq) and provide guidance on fixation, cryosectioning, and immunostaining of assembloid structures. Overall, our protocol provides a comprehensive framework for generating neuroimmune assembloids, offering researchers a valuable tool for studying the interactions between neural cell types and immune cells in the context of neurological diseases.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/7651_2024_554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2024_554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Generating Neuroimmune Assembloids Using Human Induced Pluripotent Stem Cell (iPSC)-Derived Cortical Organoids and Microglia.
The emergence of brain organoids has revolutionized our understanding of neurodevelopment and neurological diseases by providing an in vitro model system that recapitulates key aspects of human brain development. However, conventional organoid protocols often overlook the role of microglia, the resident immune cells of the central nervous system. Microglia dysfunction is implicated in various neurological disorders, highlighting the need for their inclusion in organoid models. Here, we present a novel method for generating neuroimmune assembloids using human-induced pluripotent stem cell (iPSC)-derived cortical organoids and microglia. Building upon our previous work generating myelinating cortical organoids, we extend our methodology to include the integration of microglia, ensuring their long-term survival and maturation within the organoids. We describe two integration methods: one involving direct addition of microglia progenitors to the organoids and an alternative approach where microglia and dissociated neuronal progenitors are aggregated together in a defined ratio. To facilitate downstream analysis, we also describe a dissociation protocol for single-cell RNA sequencing (scRNA-seq) and provide guidance on fixation, cryosectioning, and immunostaining of assembloid structures. Overall, our protocol provides a comprehensive framework for generating neuroimmune assembloids, offering researchers a valuable tool for studying the interactions between neural cell types and immune cells in the context of neurological diseases.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.