在复杂环境下的智能楼宇管理中应用能源综合热舒适技术

Q2 Energy
Xiaoyu Wang
{"title":"在复杂环境下的智能楼宇管理中应用能源综合热舒适技术","authors":"Xiaoyu Wang","doi":"10.1186/s42162-024-00355-x","DOIUrl":null,"url":null,"abstract":"The efficient operation of heating ventilation and air conditioning systems relies on advanced control strategies. However, current control methods are often limited by issues such as uncertain system parameter information and spatial coupling constraints related to the supply rate of the air supply fan. To this end, an energy joint thermal comfort management method for complex environments in multiple regions is proposed. The long-term total cost minimization of the system is established, and then the Lyapunov optimization technology is used to design the distributed control algorithm. Simulation validation shows that the proposed method reduces the energy cost by an average of 11.24% compared to other methods with a thermal discomfort cost coefficient of 0. The average temperature deviation in the area is improved by 0.15 °C and 0.68 °C, respectively. The method saves more than 10% of the total energy cost under different thermal perturbations with an average total temperature deviation of 0.04 °C. The results indicate that the proposed energy joint thermal comfort management method can flexibly balance energy costs and user thermal comfort without knowing any prior information of system parameters, which can also greatly protect user privacy information. This method has application value in the control of heating ventilation and air conditioning systems in complex environments such as commercial buildings.","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of energy combined thermal comfort in intelligent building management in complex environments\",\"authors\":\"Xiaoyu Wang\",\"doi\":\"10.1186/s42162-024-00355-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficient operation of heating ventilation and air conditioning systems relies on advanced control strategies. However, current control methods are often limited by issues such as uncertain system parameter information and spatial coupling constraints related to the supply rate of the air supply fan. To this end, an energy joint thermal comfort management method for complex environments in multiple regions is proposed. The long-term total cost minimization of the system is established, and then the Lyapunov optimization technology is used to design the distributed control algorithm. Simulation validation shows that the proposed method reduces the energy cost by an average of 11.24% compared to other methods with a thermal discomfort cost coefficient of 0. The average temperature deviation in the area is improved by 0.15 °C and 0.68 °C, respectively. The method saves more than 10% of the total energy cost under different thermal perturbations with an average total temperature deviation of 0.04 °C. The results indicate that the proposed energy joint thermal comfort management method can flexibly balance energy costs and user thermal comfort without knowing any prior information of system parameters, which can also greatly protect user privacy information. This method has application value in the control of heating ventilation and air conditioning systems in complex environments such as commercial buildings.\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42162-024-00355-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42162-024-00355-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

供暖通风和空调系统的高效运行有赖于先进的控制策略。然而,目前的控制方法往往受限于不确定的系统参数信息和与送风机送风速率相关的空间耦合约束等问题。为此,我们提出了一种针对多区域复杂环境的能源联合热舒适管理方法。首先确定了系统的长期总成本最小化,然后利用 Lyapunov 优化技术设计了分布式控制算法。仿真验证表明,与其他热不适成本系数为 0 的方法相比,所提出的方法平均降低了 11.24% 的能源成本。在不同的热扰动条件下,该方法节省的总能源成本超过 10%,平均总温度偏差为 0.04 °C。结果表明,所提出的能源联合热舒适度管理方法可以在事先不知道任何系统参数信息的情况下,灵活地平衡能源成本和用户热舒适度,还能极大地保护用户隐私信息。该方法在商业建筑等复杂环境下的供热通风和空调系统控制中具有应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of energy combined thermal comfort in intelligent building management in complex environments
The efficient operation of heating ventilation and air conditioning systems relies on advanced control strategies. However, current control methods are often limited by issues such as uncertain system parameter information and spatial coupling constraints related to the supply rate of the air supply fan. To this end, an energy joint thermal comfort management method for complex environments in multiple regions is proposed. The long-term total cost minimization of the system is established, and then the Lyapunov optimization technology is used to design the distributed control algorithm. Simulation validation shows that the proposed method reduces the energy cost by an average of 11.24% compared to other methods with a thermal discomfort cost coefficient of 0. The average temperature deviation in the area is improved by 0.15 °C and 0.68 °C, respectively. The method saves more than 10% of the total energy cost under different thermal perturbations with an average total temperature deviation of 0.04 °C. The results indicate that the proposed energy joint thermal comfort management method can flexibly balance energy costs and user thermal comfort without knowing any prior information of system parameters, which can also greatly protect user privacy information. This method has application value in the control of heating ventilation and air conditioning systems in complex environments such as commercial buildings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信