论频谱上三维传输问题的弗雷德霍尔姆第一类边界积分方程的可解性

Pub Date : 2024-06-05 DOI:10.1134/s0012266124020058
A. A. Kashirin, S. I. Smagin
{"title":"论频谱上三维传输问题的弗雷德霍尔姆第一类边界积分方程的可解性","authors":"A. A. Kashirin, S. I. Smagin","doi":"10.1134/s0012266124020058","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> The paper considers two weakly singular Fredholm boundary integral equations of the first\nkind to each of which the three-dimensional Helmholtz transmission problem can be reduced. The\nproperties of these equations are studied on the spectra, where they are ill posed. For the first\nequation, it is shown that its solution, if it exists on the spectrum, allows finding a solution of the\ntransmission problem. The second equation in this case always has infinitely many solutions, with\nonly one of them giving a solution of the transmission problem. The interpolation method for\nfinding approximate solutions of the integral equations and the transmission problem in question\nis discussed.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Solvability of Fredholm Boundary Integral Equations of the First Kind for the Three-Dimensional Transmission Problem on the Spectrum\",\"authors\":\"A. A. Kashirin, S. I. Smagin\",\"doi\":\"10.1134/s0012266124020058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> The paper considers two weakly singular Fredholm boundary integral equations of the first\\nkind to each of which the three-dimensional Helmholtz transmission problem can be reduced. The\\nproperties of these equations are studied on the spectra, where they are ill posed. For the first\\nequation, it is shown that its solution, if it exists on the spectrum, allows finding a solution of the\\ntransmission problem. The second equation in this case always has infinitely many solutions, with\\nonly one of them giving a solution of the transmission problem. The interpolation method for\\nfinding approximate solutions of the integral equations and the transmission problem in question\\nis discussed.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0012266124020058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124020058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文研究了两个弱奇异的弗雷德霍尔姆边界积分方程,每个方程都可以将三维亥姆霍兹传输问题简化为第一类问题。研究了这些方程在频谱上的性质,在频谱上这些方程的问题是不明确的。对于第一个方程,研究表明,如果它的解存在于频谱上,就可以找到传输问题的解。在这种情况下,第二个方程总是有无穷多个解,其中只有一个能给出传输问题的解。讨论了寻找积分方程近似解的插值法和有关的传输问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Solvability of Fredholm Boundary Integral Equations of the First Kind for the Three-Dimensional Transmission Problem on the Spectrum

Abstract

The paper considers two weakly singular Fredholm boundary integral equations of the first kind to each of which the three-dimensional Helmholtz transmission problem can be reduced. The properties of these equations are studied on the spectra, where they are ill posed. For the first equation, it is shown that its solution, if it exists on the spectrum, allows finding a solution of the transmission problem. The second equation in this case always has infinitely many solutions, with only one of them giving a solution of the transmission problem. The interpolation method for finding approximate solutions of the integral equations and the transmission problem in question is discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信