{"title":"低发射率复合弯曲消色差晶格的设计研究","authors":"Minghao Song, Timur Shaftan","doi":"10.1103/physrevaccelbeams.27.061601","DOIUrl":null,"url":null,"abstract":"Light sources worldwide have experienced rapid growth in the last decades, pushing toward higher brightness with lower emittance to meet growing demands from the user community. The quest for higher brightness motivates the development of low-emittance ring lattices. At this point, all fourth-generation storage ring light sources employ variations of the multibend achromat (MBA) lattice. In this paper, we discuss an extension of this approach, known as complex bend achromat lattice in relation to the future NSLS-II upgrade. A detailed approach for the lattice design will be described and the developed lattice will be presented. The advantages of using our complex bend approach are evident in reaching a natural emittance as low as 23 pm at a beam energy of 3 GeV, providing a straight section of 8.4 m for long insertion devices, and acquiring a ratio of about 50% of free space with respect to the ring circumference. The design includes the use of permanent magnets largely reducing the need for power supplies. Our new approach provides an extension to the MBA concept for the next-generation light source lattice design.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design study of a low emittance complex bend achromat lattice\",\"authors\":\"Minghao Song, Timur Shaftan\",\"doi\":\"10.1103/physrevaccelbeams.27.061601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light sources worldwide have experienced rapid growth in the last decades, pushing toward higher brightness with lower emittance to meet growing demands from the user community. The quest for higher brightness motivates the development of low-emittance ring lattices. At this point, all fourth-generation storage ring light sources employ variations of the multibend achromat (MBA) lattice. In this paper, we discuss an extension of this approach, known as complex bend achromat lattice in relation to the future NSLS-II upgrade. A detailed approach for the lattice design will be described and the developed lattice will be presented. The advantages of using our complex bend approach are evident in reaching a natural emittance as low as 23 pm at a beam energy of 3 GeV, providing a straight section of 8.4 m for long insertion devices, and acquiring a ratio of about 50% of free space with respect to the ring circumference. The design includes the use of permanent magnets largely reducing the need for power supplies. Our new approach provides an extension to the MBA concept for the next-generation light source lattice design.\",\"PeriodicalId\":54297,\"journal\":{\"name\":\"Physical Review Accelerators and Beams\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Accelerators and Beams\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevaccelbeams.27.061601\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.061601","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Design study of a low emittance complex bend achromat lattice
Light sources worldwide have experienced rapid growth in the last decades, pushing toward higher brightness with lower emittance to meet growing demands from the user community. The quest for higher brightness motivates the development of low-emittance ring lattices. At this point, all fourth-generation storage ring light sources employ variations of the multibend achromat (MBA) lattice. In this paper, we discuss an extension of this approach, known as complex bend achromat lattice in relation to the future NSLS-II upgrade. A detailed approach for the lattice design will be described and the developed lattice will be presented. The advantages of using our complex bend approach are evident in reaching a natural emittance as low as 23 pm at a beam energy of 3 GeV, providing a straight section of 8.4 m for long insertion devices, and acquiring a ratio of about 50% of free space with respect to the ring circumference. The design includes the use of permanent magnets largely reducing the need for power supplies. Our new approach provides an extension to the MBA concept for the next-generation light source lattice design.
期刊介绍:
Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License.
It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.