{"title":"与挤压浴相互作用的一比特和二比特量子制冷器的热力学:比较研究","authors":"Ashutosh Kumar, Sourabh Lahiri","doi":"10.1007/s12043-024-02776-5","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate quantum non-equilibrium refrigerators with one- and two-qubit systems in a squeezed thermal bath. We characterise their performances in the presence of squeezed heat baths, in terms of their coefficients of performance, cooling rates and figures of merit. Our results show that the performance of the refrigerators is strongly influenced by the squeezing parameter and the number of qubits. The performance of the two-qubit refrigerator (TQR) is found to be better than that of the one-qubit refrigerator (OQR) under the same operating conditions. Our findings suggest that a squeezed thermal bath can be a promising resource for the design of efficient quantum refrigerators in the non-equilibrium regime.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"98 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamics of one- and two-qubit quantum refrigerators interacting with squeezed baths: a comparative study\",\"authors\":\"Ashutosh Kumar, Sourabh Lahiri\",\"doi\":\"10.1007/s12043-024-02776-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate quantum non-equilibrium refrigerators with one- and two-qubit systems in a squeezed thermal bath. We characterise their performances in the presence of squeezed heat baths, in terms of their coefficients of performance, cooling rates and figures of merit. Our results show that the performance of the refrigerators is strongly influenced by the squeezing parameter and the number of qubits. The performance of the two-qubit refrigerator (TQR) is found to be better than that of the one-qubit refrigerator (OQR) under the same operating conditions. Our findings suggest that a squeezed thermal bath can be a promising resource for the design of efficient quantum refrigerators in the non-equilibrium regime.</p></div>\",\"PeriodicalId\":743,\"journal\":{\"name\":\"Pramana\",\"volume\":\"98 3\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pramana\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12043-024-02776-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-024-02776-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermodynamics of one- and two-qubit quantum refrigerators interacting with squeezed baths: a comparative study
We investigate quantum non-equilibrium refrigerators with one- and two-qubit systems in a squeezed thermal bath. We characterise their performances in the presence of squeezed heat baths, in terms of their coefficients of performance, cooling rates and figures of merit. Our results show that the performance of the refrigerators is strongly influenced by the squeezing parameter and the number of qubits. The performance of the two-qubit refrigerator (TQR) is found to be better than that of the one-qubit refrigerator (OQR) under the same operating conditions. Our findings suggest that a squeezed thermal bath can be a promising resource for the design of efficient quantum refrigerators in the non-equilibrium regime.
期刊介绍:
Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.