{"title":"具有双啁啾锥配置和束化继承的阿秒双色 X 射线自由电子激光器","authors":"Hao Sun, Xiaofan Wang, Weiqing Zhang","doi":"10.1103/physrevaccelbeams.27.060701","DOIUrl":null,"url":null,"abstract":"Attosecond x-ray pulses play a crucial role in the study of ultrafast phenomena occurring within inner and valence electrons. To achieve attosecond time-resolution studies and gain control over electronic wave functions, it is crucial to develop techniques capable of generating and synchronizing two-color x-ray pulses at the attosecond scale. In this paper, we present a novel approach for generating attosecond pulse pairs using a dual chirp-taper free-electron laser with bunching inheritance. An electron beam with a sinusoidal energy chirp, introduced by the external laser, passes through the main undulator and afterburner, both with tapers. Two-color x-ray pulses are generated from the main undulator and the afterburner, respectively, with temporal separations of several femtoseconds and energy separations of tens of electron volts. Notably, the afterburner is much shorter than the main undulator due to the bunching inheritance, which reduces the distance between two source points and alleviates the beamline focusing requirements of the two-color pulses. A comprehensive stability analysis is conducted in this paper, considering the individual effects of shot noise from self-amplified spontaneous emission and carrier-envelope phase jitter of the few-cycle laser. The results show that the radiation from the afterburner exhibits excellent stability in the proposed scheme, which is beneficial for x-ray pump-probe experiments. The proposed scheme opens up new possibilities for attosecond science enabled by x-ray attosecond pump-probe techniques and coherent control of ultrafast electronic wave packets in quantum systems.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attosecond two-color x-ray free-electron lasers with dual chirp-taper configuration and bunching inheritance\",\"authors\":\"Hao Sun, Xiaofan Wang, Weiqing Zhang\",\"doi\":\"10.1103/physrevaccelbeams.27.060701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attosecond x-ray pulses play a crucial role in the study of ultrafast phenomena occurring within inner and valence electrons. To achieve attosecond time-resolution studies and gain control over electronic wave functions, it is crucial to develop techniques capable of generating and synchronizing two-color x-ray pulses at the attosecond scale. In this paper, we present a novel approach for generating attosecond pulse pairs using a dual chirp-taper free-electron laser with bunching inheritance. An electron beam with a sinusoidal energy chirp, introduced by the external laser, passes through the main undulator and afterburner, both with tapers. Two-color x-ray pulses are generated from the main undulator and the afterburner, respectively, with temporal separations of several femtoseconds and energy separations of tens of electron volts. Notably, the afterburner is much shorter than the main undulator due to the bunching inheritance, which reduces the distance between two source points and alleviates the beamline focusing requirements of the two-color pulses. A comprehensive stability analysis is conducted in this paper, considering the individual effects of shot noise from self-amplified spontaneous emission and carrier-envelope phase jitter of the few-cycle laser. The results show that the radiation from the afterburner exhibits excellent stability in the proposed scheme, which is beneficial for x-ray pump-probe experiments. The proposed scheme opens up new possibilities for attosecond science enabled by x-ray attosecond pump-probe techniques and coherent control of ultrafast electronic wave packets in quantum systems.\",\"PeriodicalId\":54297,\"journal\":{\"name\":\"Physical Review Accelerators and Beams\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Accelerators and Beams\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevaccelbeams.27.060701\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.060701","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
阿秒 X 射线脉冲在研究内价电子和价电子内部发生的超快现象中发挥着至关重要的作用。为了实现阿秒时间分辨率研究并获得对电子波函数的控制,开发能够在阿秒尺度上产生和同步双色 X 射线脉冲的技术至关重要。在本文中,我们介绍了一种利用具有束集继承性的双啁啾锥自由电子激光器产生阿秒脉冲对的新方法。由外部激光器引入的具有正弦能量啁啾的电子束通过主起爆器和后燃器,两者都具有锥度。主减波器和后燃器分别产生双色 X 射线脉冲,时间间隔为数飞秒,能量间隔为数十电子伏特。值得注意的是,由于束流继承,后燃器比主起伏器短得多,这就缩短了两个源点之间的距离,减轻了双色脉冲对光束线聚焦的要求。本文进行了全面的稳定性分析,考虑了自放大自发辐射的射出噪声和几周期激光的载波包络相位抖动的单独影响。结果表明,在所提出的方案中,来自后燃器的辐射表现出了极佳的稳定性,这有利于 X 射线泵浦探针实验。所提出的方案为利用 X 射线阿秒泵浦探针技术进行阿秒科学研究以及量子系统中超快电子波包的相干控制开辟了新的可能性。
Attosecond two-color x-ray free-electron lasers with dual chirp-taper configuration and bunching inheritance
Attosecond x-ray pulses play a crucial role in the study of ultrafast phenomena occurring within inner and valence electrons. To achieve attosecond time-resolution studies and gain control over electronic wave functions, it is crucial to develop techniques capable of generating and synchronizing two-color x-ray pulses at the attosecond scale. In this paper, we present a novel approach for generating attosecond pulse pairs using a dual chirp-taper free-electron laser with bunching inheritance. An electron beam with a sinusoidal energy chirp, introduced by the external laser, passes through the main undulator and afterburner, both with tapers. Two-color x-ray pulses are generated from the main undulator and the afterburner, respectively, with temporal separations of several femtoseconds and energy separations of tens of electron volts. Notably, the afterburner is much shorter than the main undulator due to the bunching inheritance, which reduces the distance between two source points and alleviates the beamline focusing requirements of the two-color pulses. A comprehensive stability analysis is conducted in this paper, considering the individual effects of shot noise from self-amplified spontaneous emission and carrier-envelope phase jitter of the few-cycle laser. The results show that the radiation from the afterburner exhibits excellent stability in the proposed scheme, which is beneficial for x-ray pump-probe experiments. The proposed scheme opens up new possibilities for attosecond science enabled by x-ray attosecond pump-probe techniques and coherent control of ultrafast electronic wave packets in quantum systems.
期刊介绍:
Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License.
It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.