阴影、双曲性和阿鲁特奇变换

Pub Date : 2024-07-05 DOI:10.1007/s10998-024-00597-y
C. A. Morales, T. T. Linh
{"title":"阴影、双曲性和阿鲁特奇变换","authors":"C. A. Morales, T. T. Linh","doi":"10.1007/s10998-024-00597-y","DOIUrl":null,"url":null,"abstract":"<p>We introduce the concept of <span>\\(\\epsilon \\)</span>-homoclinic points for invertible linear operators on Banach spaces. We establish that an operator is hyperbolic if and only if it possesses the shadowing property without any nonzero <span>\\(\\epsilon \\)</span>-homoclinic points (for some <span>\\(\\epsilon &gt;0\\)</span>). Additionally, we demonstrate that a linear operator on a Banach space <i>X</i> exhibiting the shadowing property is uniformly contracting, uniformly expanding, possesses a nontrivial invariant closed subspace, or has a dense set of bounded orbits in <i>X</i>. Moreover, we demonstrate the invariance of the set of generalized hyperbolic operators under <span>\\(\\lambda \\)</span>-Aluthge transforms, where <span>\\(\\lambda \\in \\left( 0, 1\\right) \\)</span>. Additionally, we establish that the Aluthge iterates of an invertible operator converge to a hyperbolic operator solely when the initial operator is hyperbolic. Finally, we prove that the Aluthge iterates of hyponormal shifted hyperbolic weighted shifts diverge and also the existence of hyperbolic weighted shifts with divergent Aluthge iterates.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shadowing, hyperbolicity, and Aluthge transforms\",\"authors\":\"C. A. Morales, T. T. Linh\",\"doi\":\"10.1007/s10998-024-00597-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce the concept of <span>\\\\(\\\\epsilon \\\\)</span>-homoclinic points for invertible linear operators on Banach spaces. We establish that an operator is hyperbolic if and only if it possesses the shadowing property without any nonzero <span>\\\\(\\\\epsilon \\\\)</span>-homoclinic points (for some <span>\\\\(\\\\epsilon &gt;0\\\\)</span>). Additionally, we demonstrate that a linear operator on a Banach space <i>X</i> exhibiting the shadowing property is uniformly contracting, uniformly expanding, possesses a nontrivial invariant closed subspace, or has a dense set of bounded orbits in <i>X</i>. Moreover, we demonstrate the invariance of the set of generalized hyperbolic operators under <span>\\\\(\\\\lambda \\\\)</span>-Aluthge transforms, where <span>\\\\(\\\\lambda \\\\in \\\\left( 0, 1\\\\right) \\\\)</span>. Additionally, we establish that the Aluthge iterates of an invertible operator converge to a hyperbolic operator solely when the initial operator is hyperbolic. Finally, we prove that the Aluthge iterates of hyponormal shifted hyperbolic weighted shifts diverge and also the existence of hyperbolic weighted shifts with divergent Aluthge iterates.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-024-00597-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00597-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为巴拿赫空间上的可逆线性算子引入了 \(\epsilon \)-同轴点的概念。我们确定,当且仅当一个算子具有阴影性质而没有任何非零的\(\epsilon \)-同轴点(对于某个\(\epsilon >0\))时,这个算子是双曲的。此外,我们证明了巴拿赫空间 X 上的线性算子表现出的阴影特性是均匀收缩、均匀膨胀的,拥有一个非难不变的封闭子空间,或者在 X 上有一个密集的有界轨道集。此外,我们证明了广义双曲算子集在 \(\lambda \)-Aluthge 变换下的不变性,其中 \(\lambda \in \left( 0, 1\right) \)。此外,我们还证明了当初始算子是双曲算子时,可逆算子的 Aluthge 迭代才会收敛到双曲算子。最后,我们证明了次正交移位双曲加权移位的 Aluthge 迭代发散,以及存在 Aluthge 迭代发散的双曲加权移位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Shadowing, hyperbolicity, and Aluthge transforms

We introduce the concept of \(\epsilon \)-homoclinic points for invertible linear operators on Banach spaces. We establish that an operator is hyperbolic if and only if it possesses the shadowing property without any nonzero \(\epsilon \)-homoclinic points (for some \(\epsilon >0\)). Additionally, we demonstrate that a linear operator on a Banach space X exhibiting the shadowing property is uniformly contracting, uniformly expanding, possesses a nontrivial invariant closed subspace, or has a dense set of bounded orbits in X. Moreover, we demonstrate the invariance of the set of generalized hyperbolic operators under \(\lambda \)-Aluthge transforms, where \(\lambda \in \left( 0, 1\right) \). Additionally, we establish that the Aluthge iterates of an invertible operator converge to a hyperbolic operator solely when the initial operator is hyperbolic. Finally, we prove that the Aluthge iterates of hyponormal shifted hyperbolic weighted shifts diverge and also the existence of hyperbolic weighted shifts with divergent Aluthge iterates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信