{"title":"求解线性乘法编程的自调整分支与边界算法","authors":"Yanzhen Zhang","doi":"10.1007/s40840-024-01730-3","DOIUrl":null,"url":null,"abstract":"<p>This article presents a self-adjustable branch-and-bound algorithm for globally solving a class of linear multiplicative programming problems (LMP). In this algorithm, a self-adjustable branching rule is introduced and it can continuously update the upper bound for the optimal value of LMP by selecting suitable branching point under certain conditions, which differs from the standard bisection rule. The proposed algorithm further integrates the linear relaxation program and the self-adjustable branching rule. The dependability and robustness of the proposed algorithm are demonstrated by establishing the global convergence. Furthermore, the computational complexity of the proposed algorithm is estimated. Finally, numerical results validate the effectiveness of the self-adjustable branching rule and demonstrate the feasibility of the proposed algorithm.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Self-Adjustable Branch-and-Bound Algorithm for Solving Linear Multiplicative Programming\",\"authors\":\"Yanzhen Zhang\",\"doi\":\"10.1007/s40840-024-01730-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article presents a self-adjustable branch-and-bound algorithm for globally solving a class of linear multiplicative programming problems (LMP). In this algorithm, a self-adjustable branching rule is introduced and it can continuously update the upper bound for the optimal value of LMP by selecting suitable branching point under certain conditions, which differs from the standard bisection rule. The proposed algorithm further integrates the linear relaxation program and the self-adjustable branching rule. The dependability and robustness of the proposed algorithm are demonstrated by establishing the global convergence. Furthermore, the computational complexity of the proposed algorithm is estimated. Finally, numerical results validate the effectiveness of the self-adjustable branching rule and demonstrate the feasibility of the proposed algorithm.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01730-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01730-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Self-Adjustable Branch-and-Bound Algorithm for Solving Linear Multiplicative Programming
This article presents a self-adjustable branch-and-bound algorithm for globally solving a class of linear multiplicative programming problems (LMP). In this algorithm, a self-adjustable branching rule is introduced and it can continuously update the upper bound for the optimal value of LMP by selecting suitable branching point under certain conditions, which differs from the standard bisection rule. The proposed algorithm further integrates the linear relaxation program and the self-adjustable branching rule. The dependability and robustness of the proposed algorithm are demonstrated by establishing the global convergence. Furthermore, the computational complexity of the proposed algorithm is estimated. Finally, numerical results validate the effectiveness of the self-adjustable branching rule and demonstrate the feasibility of the proposed algorithm.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.