从时间轴联系图到密切接触者追踪和感染扩散干预措施

IF 10.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yipeng Zhang;Zhifeng Bao;Yuchen Li;Baihua Zheng;Xiaoli Wang
{"title":"从时间轴联系图到密切接触者追踪和感染扩散干预措施","authors":"Yipeng Zhang;Zhifeng Bao;Yuchen Li;Baihua Zheng;Xiaoli Wang","doi":"10.1109/TKDE.2024.3423476","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel graph structure to address the problems of information spreading in a real-world, frequently updating graph, with two main contributions at hand: accurately tracing infection diffusion according to fine-grained user movements and finding vulnerable vertices under the virus immunization scenario to mitigate infection diffusion. Unlike previous work that primarily predicts the long-term epidemic trend at the census level, this study aims to intervene in the short-term at the individual level. Therefore, two downstream tasks are formulated to illustrate practicalities: \n<u>E</u>\npidemic \n<u>M</u>\nitigating in Public \n<u>A</u>\nrea problem (\n<inline-formula><tex-math>$EMA$</tex-math></inline-formula>\n) and \n<u>E</u>\npidemic Maximized \n<u>S</u>\npread in Public \n<u>A</u>\nrea problem (\n<inline-formula><tex-math>$ESA$</tex-math></inline-formula>\n), where \n<inline-formula><tex-math>$EMA$</tex-math></inline-formula>\n aims to find intervention strategies, and \n<inline-formula><tex-math>$ESA$</tex-math></inline-formula>\n is an adversarial solution against the intervention strategy to test the robustness. Comprehensive experiments are conducted using two real-world datasets with millions of public transport trips, which demonstrate the effectiveness of our approach and highlight the importance of considering the dynamic nature of close contacts in epidemic modelling.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"8328-8340"},"PeriodicalIF":10.4000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From a Timeline Contact Graph to Close Contact Tracing and Infection Diffusion Intervention\",\"authors\":\"Yipeng Zhang;Zhifeng Bao;Yuchen Li;Baihua Zheng;Xiaoli Wang\",\"doi\":\"10.1109/TKDE.2024.3423476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel graph structure to address the problems of information spreading in a real-world, frequently updating graph, with two main contributions at hand: accurately tracing infection diffusion according to fine-grained user movements and finding vulnerable vertices under the virus immunization scenario to mitigate infection diffusion. Unlike previous work that primarily predicts the long-term epidemic trend at the census level, this study aims to intervene in the short-term at the individual level. Therefore, two downstream tasks are formulated to illustrate practicalities: \\n<u>E</u>\\npidemic \\n<u>M</u>\\nitigating in Public \\n<u>A</u>\\nrea problem (\\n<inline-formula><tex-math>$EMA$</tex-math></inline-formula>\\n) and \\n<u>E</u>\\npidemic Maximized \\n<u>S</u>\\npread in Public \\n<u>A</u>\\nrea problem (\\n<inline-formula><tex-math>$ESA$</tex-math></inline-formula>\\n), where \\n<inline-formula><tex-math>$EMA$</tex-math></inline-formula>\\n aims to find intervention strategies, and \\n<inline-formula><tex-math>$ESA$</tex-math></inline-formula>\\n is an adversarial solution against the intervention strategy to test the robustness. Comprehensive experiments are conducted using two real-world datasets with millions of public transport trips, which demonstrate the effectiveness of our approach and highlight the importance of considering the dynamic nature of close contacts in epidemic modelling.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"36 12\",\"pages\":\"8328-8340\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10586786/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10586786/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新颖的图结构,以解决现实世界中频繁更新的图中的信息传播问题,其主要贡献有两个:根据细粒度的用户移动准确追踪感染扩散情况,以及寻找病毒免疫情况下的脆弱顶点以缓解感染扩散。与以往主要在人口普查层面预测长期流行趋势的工作不同,本研究旨在在个人层面进行短期干预。因此,我们制定了两个下游任务来说明实际情况:其中,$EMA$旨在寻找干预策略,而$ESA$则是针对干预策略的对抗性解决方案,以测试其稳健性。我们使用两个包含数百万次公共交通出行的真实数据集进行了综合实验,证明了我们方法的有效性,并强调了在流行病建模中考虑密切接触者动态性质的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From a Timeline Contact Graph to Close Contact Tracing and Infection Diffusion Intervention
This paper proposes a novel graph structure to address the problems of information spreading in a real-world, frequently updating graph, with two main contributions at hand: accurately tracing infection diffusion according to fine-grained user movements and finding vulnerable vertices under the virus immunization scenario to mitigate infection diffusion. Unlike previous work that primarily predicts the long-term epidemic trend at the census level, this study aims to intervene in the short-term at the individual level. Therefore, two downstream tasks are formulated to illustrate practicalities: E pidemic M itigating in Public A rea problem ( $EMA$ ) and E pidemic Maximized S pread in Public A rea problem ( $ESA$ ), where $EMA$ aims to find intervention strategies, and $ESA$ is an adversarial solution against the intervention strategy to test the robustness. Comprehensive experiments are conducted using two real-world datasets with millions of public transport trips, which demonstrate the effectiveness of our approach and highlight the importance of considering the dynamic nature of close contacts in epidemic modelling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信