具有流体运动轨迹记忆的修正开尔文-沃伊特模型初始边界值问题的可解性

Pub Date : 2024-06-05 DOI:10.1134/s0012266124020046
M. V. Turbin, A. S. Ustiuzhaninova
{"title":"具有流体运动轨迹记忆的修正开尔文-沃伊特模型初始边界值问题的可解性","authors":"M. V. Turbin, A. S. Ustiuzhaninova","doi":"10.1134/s0012266124020046","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> The paper deals with proving the weak solvability of an initial–boundary value problem for\nthe modified Kelvin–Voigt model taking into account memory along the trajectories of motion of\nfluid particles. To this end, we consider an approximation problem whose solvability is established\nwith the use of the Leray–Schauder fixed point theorem. Then, based on a priori estimates, we\nshow that the sequence of solutions of the approximation problem has a subsequence that weakly\nconverges to the solution of the original problem as the approximation parameter tends to zero.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solvability of an Initial–Boundary Value Problem for the Modified Kelvin–Voigt Model with Memory along Fluid Motion Trajectories\",\"authors\":\"M. V. Turbin, A. S. Ustiuzhaninova\",\"doi\":\"10.1134/s0012266124020046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> The paper deals with proving the weak solvability of an initial–boundary value problem for\\nthe modified Kelvin–Voigt model taking into account memory along the trajectories of motion of\\nfluid particles. To this end, we consider an approximation problem whose solvability is established\\nwith the use of the Leray–Schauder fixed point theorem. Then, based on a priori estimates, we\\nshow that the sequence of solutions of the approximation problem has a subsequence that weakly\\nconverges to the solution of the original problem as the approximation parameter tends to zero.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0012266124020046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124020046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文论证了修正的开尔文-沃伊特模型的初始边界值问题的弱可解性,并考虑了流体粒子运动轨迹的记忆。为此,我们考虑了一个近似问题,该问题的可解性是利用勒雷-肖德尔定点定理确定的。然后,基于先验估计,我们证明近似问题的解序列有一个子序列,当近似参数趋于零时,该子序列弱收敛于原始问题的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Solvability of an Initial–Boundary Value Problem for the Modified Kelvin–Voigt Model with Memory along Fluid Motion Trajectories

Abstract

The paper deals with proving the weak solvability of an initial–boundary value problem for the modified Kelvin–Voigt model taking into account memory along the trajectories of motion of fluid particles. To this end, we consider an approximation problem whose solvability is established with the use of the Leray–Schauder fixed point theorem. Then, based on a priori estimates, we show that the sequence of solutions of the approximation problem has a subsequence that weakly converges to the solution of the original problem as the approximation parameter tends to zero.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信