四元对称空间和扭转空间的 Cartan-Helgason 定理

IF 0.5 4区 数学 Q3 MATHEMATICS
Clemens Weiske , Jun Yu , Genkai Zhang
{"title":"四元对称空间和扭转空间的 Cartan-Helgason 定理","authors":"Clemens Weiske ,&nbsp;Jun Yu ,&nbsp;Genkai Zhang","doi":"10.1016/j.indag.2024.05.013","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mo>(</mo><mi>g</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span> be a complex quaternionic symmetric pair with <span><math><mi>k</mi></math></span> having an ideal <span><math><mrow><mi>sl</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>k</mi><mo>=</mo><mi>sl</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>ℂ</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>. Consider the representation <span><math><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msup></mrow></math></span> of <span><math><mi>k</mi></math></span> via the projection <span><math><mrow><mi>k</mi><mo>→</mo><mi>sl</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span> onto the ideal <span><math><mrow><mi>sl</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span>. We study the finite dimensional irreducible representations <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>g</mi></math></span> which contain <span><math><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> under <span><math><mrow><mi>k</mi><mo>⊆</mo><mi>g</mi></mrow></math></span>. We give a characterization of all such representations <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span> and find the corresponding multiplicity, the dimension of <span><math><mrow><mo>Hom</mo><mrow><mo>(</mo><mi>V</mi><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow><msub><mrow><mo>|</mo></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>)</mo></mrow><mo>.</mo></mrow></math></span> We consider also the branching problem of <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span> under <span><math><mrow><mi>l</mi><mo>=</mo><mi>u</mi><msub><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>ℂ</mi></mrow></msub><mo>+</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>⊂</mo><mi>k</mi></mrow></math></span> and find the multiplicities. Geometrically the Lie subalgebra <span><math><mrow><mi>l</mi><mo>⊂</mo><mi>k</mi></mrow></math></span> defines a twistor space over the compact symmetric space of the compact real form <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>u</mi></mrow></msub></math></span> of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>ℂ</mi></mrow></msub></math></span>, <span><math><mrow><mtext>Lie</mtext><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>ℂ</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>g</mi></mrow></math></span>, and our results give the decomposition for the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-spaces of sections of certain vector bundles over the symmetric space and line bundles over the twistor space. This generalizes Cartan–Helgason’s theorem for symmetric spaces <span><math><mrow><mo>(</mo><mi>g</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span> and Schlichtkrull’s theorem for Hermitian symmetric spaces where one-dimensional representations of <span><math><mi>k</mi></math></span> are considered.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 2","pages":"Pages 357-382"},"PeriodicalIF":0.5000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cartan–Helgason theorem for quaternionic symmetric and twistor spaces\",\"authors\":\"Clemens Weiske ,&nbsp;Jun Yu ,&nbsp;Genkai Zhang\",\"doi\":\"10.1016/j.indag.2024.05.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mo>(</mo><mi>g</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span> be a complex quaternionic symmetric pair with <span><math><mi>k</mi></math></span> having an ideal <span><math><mrow><mi>sl</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>k</mi><mo>=</mo><mi>sl</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>ℂ</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>. Consider the representation <span><math><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msup></mrow></math></span> of <span><math><mi>k</mi></math></span> via the projection <span><math><mrow><mi>k</mi><mo>→</mo><mi>sl</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span> onto the ideal <span><math><mrow><mi>sl</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span>. We study the finite dimensional irreducible representations <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>g</mi></math></span> which contain <span><math><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> under <span><math><mrow><mi>k</mi><mo>⊆</mo><mi>g</mi></mrow></math></span>. We give a characterization of all such representations <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span> and find the corresponding multiplicity, the dimension of <span><math><mrow><mo>Hom</mo><mrow><mo>(</mo><mi>V</mi><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow><msub><mrow><mo>|</mo></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>)</mo></mrow><mo>.</mo></mrow></math></span> We consider also the branching problem of <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span> under <span><math><mrow><mi>l</mi><mo>=</mo><mi>u</mi><msub><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>ℂ</mi></mrow></msub><mo>+</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>⊂</mo><mi>k</mi></mrow></math></span> and find the multiplicities. Geometrically the Lie subalgebra <span><math><mrow><mi>l</mi><mo>⊂</mo><mi>k</mi></mrow></math></span> defines a twistor space over the compact symmetric space of the compact real form <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>u</mi></mrow></msub></math></span> of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>ℂ</mi></mrow></msub></math></span>, <span><math><mrow><mtext>Lie</mtext><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>ℂ</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>g</mi></mrow></math></span>, and our results give the decomposition for the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-spaces of sections of certain vector bundles over the symmetric space and line bundles over the twistor space. This generalizes Cartan–Helgason’s theorem for symmetric spaces <span><math><mrow><mo>(</mo><mi>g</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span> and Schlichtkrull’s theorem for Hermitian symmetric spaces where one-dimensional representations of <span><math><mi>k</mi></math></span> are considered.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"36 2\",\"pages\":\"Pages 357-382\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357724000636\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000636","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设复数四元对称对有一个理想 , .考虑通过投影到理想.我们将研究在...之下包含...的有限维不可还原表示。我们给出了所有这些表示的特征,并找到了相应的乘数和的维数。我们还考虑了 下的分支问题,并找到了乘数。从几何学角度看,李子代数定义了Ⅳ的紧凑实形式的紧凑对称空间上的扭转空间,我们的结果给出了对称空间上的某些向量束和扭转空间上的线束的截面的-空间的分解。这概括了对称空间的 Cartan-Helgason 定理和赫米蒂对称空间的 Schlichtkrull 定理,其中考虑了 的一维表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cartan–Helgason theorem for quaternionic symmetric and twistor spaces
Let (g,k) be a complex quaternionic symmetric pair with k having an ideal sl(2,), k=sl(2,)+mc. Consider the representation Sm(2)=m+1 of k via the projection ksl(2,) onto the ideal sl(2,). We study the finite dimensional irreducible representations V(λ) of g which contain Sm(2) under kg. We give a characterization of all such representations V(λ) and find the corresponding multiplicity, the dimension of Hom(V(λ)|k,Sm(2)). We consider also the branching problem of V(λ) under l=u(1)+mck and find the multiplicities. Geometrically the Lie subalgebra lk defines a twistor space over the compact symmetric space of the compact real form Gu of G, Lie(G)=g, and our results give the decomposition for the L2-spaces of sections of certain vector bundles over the symmetric space and line bundles over the twistor space. This generalizes Cartan–Helgason’s theorem for symmetric spaces (g,k) and Schlichtkrull’s theorem for Hermitian symmetric spaces where one-dimensional representations of k are considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信