{"title":"生物炭通过绿色合成支持的 L - 半胱氨酸修饰的纳米零价铁在水和土壤系统中迁移过程中的六价铬转化","authors":"Congcong Cheng, Haijun Chen, Nan Xu, Shan Zhang","doi":"10.1007/s11368-024-03857-z","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>The Cr(VI) removal capacity of green synthesized nano-zero-valent iron (GnZVI) using tea polyphenols (TPs) remains limited. To improve their application in contaminated soil and groundwater, the GnZVI was modified. This is necessary for in-situ remediation of heavy metal-contaminated soil and groundwater.</p><h3 data-test=\"abstract-sub-heading\">Materials and methods</h3><p>The GnZVI-based carbon-composite (L&GnZVI@BC) was successfully constructed via the synergistic effect of L-cysteine modification and biochar support. The Cr(VI) removal capacity and transportability of L&GnZVI@BC were investigated in soil–water system by batch and column experiments.</p><h3 data-test=\"abstract-sub-heading\">Results and discussion</h3><p>Comparison with two materials of GnZVI separately modified by L-cysteine (L-GnZVI) or supported by biochar (GnZVI@BC)), GnZVI composite with a combination modification of L-cysteine and biochar (L&GnZVI@BC, L-cysteine/biochar/Fe = 0.1/0.1/1) showed a much higher Cr(VI) removal capacity in soil and groundwater. The synergistic effect of the reduction of L-cysteine functional groups and the dispersibility of biochar support can enhance the transportability of L&GnZVI@BC in water-saturated sand media for more Cr(VI) adsorption at neutral pH; while that improved the soluble Fe(II) released from composite for the higher reduction of Cr(VI) into Cr(III) at acidic pH. Particularly, L&GnZVI@BC favored more Cr(III) generation during transport in porous media at lower pH when applied in the treatment of Cr(VI) contamination.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>This research highlights that the modification of both L-cysteine and biochar was beneficial to sufficient transport and efficient remediation in Cr(VI)-contaminated soil and groundwater environments at different pH ranges. This study’s results provide a theoretical support for the practical application of nZVI composites in in-situ remediation of Cr(VI)-contaminated soil and groundwater via an environmental-friendly approach.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":"29 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hexavalent chromium transformation during transport of L − cysteine modified nano − zero − valent iron supported by biochar via green synthesis in water and soil systems\",\"authors\":\"Congcong Cheng, Haijun Chen, Nan Xu, Shan Zhang\",\"doi\":\"10.1007/s11368-024-03857-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Purpose</h3><p>The Cr(VI) removal capacity of green synthesized nano-zero-valent iron (GnZVI) using tea polyphenols (TPs) remains limited. To improve their application in contaminated soil and groundwater, the GnZVI was modified. This is necessary for in-situ remediation of heavy metal-contaminated soil and groundwater.</p><h3 data-test=\\\"abstract-sub-heading\\\">Materials and methods</h3><p>The GnZVI-based carbon-composite (L&GnZVI@BC) was successfully constructed via the synergistic effect of L-cysteine modification and biochar support. The Cr(VI) removal capacity and transportability of L&GnZVI@BC were investigated in soil–water system by batch and column experiments.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results and discussion</h3><p>Comparison with two materials of GnZVI separately modified by L-cysteine (L-GnZVI) or supported by biochar (GnZVI@BC)), GnZVI composite with a combination modification of L-cysteine and biochar (L&GnZVI@BC, L-cysteine/biochar/Fe = 0.1/0.1/1) showed a much higher Cr(VI) removal capacity in soil and groundwater. The synergistic effect of the reduction of L-cysteine functional groups and the dispersibility of biochar support can enhance the transportability of L&GnZVI@BC in water-saturated sand media for more Cr(VI) adsorption at neutral pH; while that improved the soluble Fe(II) released from composite for the higher reduction of Cr(VI) into Cr(III) at acidic pH. Particularly, L&GnZVI@BC favored more Cr(III) generation during transport in porous media at lower pH when applied in the treatment of Cr(VI) contamination.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>This research highlights that the modification of both L-cysteine and biochar was beneficial to sufficient transport and efficient remediation in Cr(VI)-contaminated soil and groundwater environments at different pH ranges. This study’s results provide a theoretical support for the practical application of nZVI composites in in-situ remediation of Cr(VI)-contaminated soil and groundwater via an environmental-friendly approach.</p>\",\"PeriodicalId\":17139,\"journal\":{\"name\":\"Journal of Soils and Sediments\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soils and Sediments\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11368-024-03857-z\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soils and Sediments","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11368-024-03857-z","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Hexavalent chromium transformation during transport of L − cysteine modified nano − zero − valent iron supported by biochar via green synthesis in water and soil systems
Purpose
The Cr(VI) removal capacity of green synthesized nano-zero-valent iron (GnZVI) using tea polyphenols (TPs) remains limited. To improve their application in contaminated soil and groundwater, the GnZVI was modified. This is necessary for in-situ remediation of heavy metal-contaminated soil and groundwater.
Materials and methods
The GnZVI-based carbon-composite (L&GnZVI@BC) was successfully constructed via the synergistic effect of L-cysteine modification and biochar support. The Cr(VI) removal capacity and transportability of L&GnZVI@BC were investigated in soil–water system by batch and column experiments.
Results and discussion
Comparison with two materials of GnZVI separately modified by L-cysteine (L-GnZVI) or supported by biochar (GnZVI@BC)), GnZVI composite with a combination modification of L-cysteine and biochar (L&GnZVI@BC, L-cysteine/biochar/Fe = 0.1/0.1/1) showed a much higher Cr(VI) removal capacity in soil and groundwater. The synergistic effect of the reduction of L-cysteine functional groups and the dispersibility of biochar support can enhance the transportability of L&GnZVI@BC in water-saturated sand media for more Cr(VI) adsorption at neutral pH; while that improved the soluble Fe(II) released from composite for the higher reduction of Cr(VI) into Cr(III) at acidic pH. Particularly, L&GnZVI@BC favored more Cr(III) generation during transport in porous media at lower pH when applied in the treatment of Cr(VI) contamination.
Conclusion
This research highlights that the modification of both L-cysteine and biochar was beneficial to sufficient transport and efficient remediation in Cr(VI)-contaminated soil and groundwater environments at different pH ranges. This study’s results provide a theoretical support for the practical application of nZVI composites in in-situ remediation of Cr(VI)-contaminated soil and groundwater via an environmental-friendly approach.
期刊介绍:
The Journal of Soils and Sediments (JSS) is devoted to soils and sediments; it deals with contaminated, intact and disturbed soils and sediments. JSS explores both the common aspects and the differences between these two environmental compartments. Inter-linkages at the catchment scale and with the Earth’s system (inter-compartment) are an important topic in JSS. The range of research coverage includes the effects of disturbances and contamination; research, strategies and technologies for prediction, prevention, and protection; identification and characterization; treatment, remediation and reuse; risk assessment and management; creation and implementation of quality standards; international regulation and legislation.