UMD 巴拿赫空间中的强克赖斯有界算子

Pub Date : 2024-06-07 DOI:10.1007/s00233-024-10441-x
Chenxi Deng, Emiel Lorist, Mark Veraar
{"title":"UMD 巴拿赫空间中的强克赖斯有界算子","authors":"Chenxi Deng, Emiel Lorist, Mark Veraar","doi":"10.1007/s00233-024-10441-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper we give growth estimates for <span>\\(\\Vert T^n\\Vert \\)</span> for <span>\\(n\\rightarrow \\infty \\)</span> in the case <i>T</i> is a strongly Kreiss bounded operator on a <span>\\({{\\,\\textrm{UMD}\\,}}\\)</span> Banach space <i>X</i>. In several special cases we provide explicit growth rates. This includes known cases such as Hilbert and <span>\\(L^p\\)</span>-spaces, but also intermediate <span>\\({{\\,\\textrm{UMD}\\,}}\\)</span> spaces such as non-commutative <span>\\(L^p\\)</span>-spaces and variable Lebesgue spaces.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strongly Kreiss bounded operators in UMD Banach spaces\",\"authors\":\"Chenxi Deng, Emiel Lorist, Mark Veraar\",\"doi\":\"10.1007/s00233-024-10441-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we give growth estimates for <span>\\\\(\\\\Vert T^n\\\\Vert \\\\)</span> for <span>\\\\(n\\\\rightarrow \\\\infty \\\\)</span> in the case <i>T</i> is a strongly Kreiss bounded operator on a <span>\\\\({{\\\\,\\\\textrm{UMD}\\\\,}}\\\\)</span> Banach space <i>X</i>. In several special cases we provide explicit growth rates. This includes known cases such as Hilbert and <span>\\\\(L^p\\\\)</span>-spaces, but also intermediate <span>\\\\({{\\\\,\\\\textrm{UMD}\\\\,}}\\\\)</span> spaces such as non-commutative <span>\\\\(L^p\\\\)</span>-spaces and variable Lebesgue spaces.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10441-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10441-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们给出了在({{\,\textrm{UMD}\,}\)巴纳赫空间X上T是强克雷布斯有界算子的情况下,\(\Vert T^n\Vert \)对于\(n\rightarrow \infty \)的增长估计。这包括已知的情况,比如希尔伯特空间和(L^p\)空间,也包括中间的({{\textrm{UMD}\,}})空间,比如非交换(L^p\)空间和可变的勒贝格空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Strongly Kreiss bounded operators in UMD Banach spaces

In this paper we give growth estimates for \(\Vert T^n\Vert \) for \(n\rightarrow \infty \) in the case T is a strongly Kreiss bounded operator on a \({{\,\textrm{UMD}\,}}\) Banach space X. In several special cases we provide explicit growth rates. This includes known cases such as Hilbert and \(L^p\)-spaces, but also intermediate \({{\,\textrm{UMD}\,}}\) spaces such as non-commutative \(L^p\)-spaces and variable Lebesgue spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信