共形极限与投影结构

IF 0.9 2区 数学 Q2 MATHEMATICS
Pedro M Silva, Peter B Gothen
{"title":"共形极限与投影结构","authors":"Pedro M Silva, Peter B Gothen","doi":"10.1093/imrn/rnae142","DOIUrl":null,"url":null,"abstract":"The non-abelian Hodge correspondence maps a polystable $\\textrm{SL}(2, {\\mathbb{R}})$-Higgs bundle on a compact Riemann surface $X$ of genus $g \\geq 2$ to a connection that, in some cases, is the holonomy of a branched hyperbolic structure. Gaiotto’s conformal limit maps the same bundle to a partial oper, that is, to a connection whose holonomy is that of a branched complex projective structure compatible with $X$. In this article, we show how these are both instances of the same phenomenon: the family of connections appearing in the conformal limit can be understood as a family of complex projective structures, deforming the hyperbolic ones into the ones compatible with $X$. We also show that, for zero Toledo invariant, this deformation is optimal, inducing a geodesic on Teichmüller’s space.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"17 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Conformal Limit and Projective Structures\",\"authors\":\"Pedro M Silva, Peter B Gothen\",\"doi\":\"10.1093/imrn/rnae142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The non-abelian Hodge correspondence maps a polystable $\\\\textrm{SL}(2, {\\\\mathbb{R}})$-Higgs bundle on a compact Riemann surface $X$ of genus $g \\\\geq 2$ to a connection that, in some cases, is the holonomy of a branched hyperbolic structure. Gaiotto’s conformal limit maps the same bundle to a partial oper, that is, to a connection whose holonomy is that of a branched complex projective structure compatible with $X$. In this article, we show how these are both instances of the same phenomenon: the family of connections appearing in the conformal limit can be understood as a family of complex projective structures, deforming the hyperbolic ones into the ones compatible with $X$. We also show that, for zero Toledo invariant, this deformation is optimal, inducing a geodesic on Teichmüller’s space.\",\"PeriodicalId\":14461,\"journal\":{\"name\":\"International Mathematics Research Notices\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematics Research Notices\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae142\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae142","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

非阿贝尔霍奇对应关系将属$g \geq 2$的紧凑黎曼曲面$X$上的多稳$\textrm{SL}(2, {\mathbb{R}})$-希格斯束映射为一种连接,在某些情况下,这种连接是支双曲结构的全局性。Gaiotto的共形极限将同一束映射为部分操作,即映射为整体性与$X$相容的支化复射结构的连接。在本文中,我们将展示这两种情况如何是同一现象的实例:在保形极限中出现的连接系可以理解为复射结构系,将双曲结构变形为与 $X$ 兼容的结构。我们还证明,对于零托莱多不变量,这种变形是最佳的,会在泰赫米勒空间上产生一个大地线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Conformal Limit and Projective Structures
The non-abelian Hodge correspondence maps a polystable $\textrm{SL}(2, {\mathbb{R}})$-Higgs bundle on a compact Riemann surface $X$ of genus $g \geq 2$ to a connection that, in some cases, is the holonomy of a branched hyperbolic structure. Gaiotto’s conformal limit maps the same bundle to a partial oper, that is, to a connection whose holonomy is that of a branched complex projective structure compatible with $X$. In this article, we show how these are both instances of the same phenomenon: the family of connections appearing in the conformal limit can be understood as a family of complex projective structures, deforming the hyperbolic ones into the ones compatible with $X$. We also show that, for zero Toledo invariant, this deformation is optimal, inducing a geodesic on Teichmüller’s space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
316
审稿时长
1 months
期刊介绍: International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信