共形极限与投影结构

Pub Date : 2024-07-03 DOI:10.1093/imrn/rnae142
Pedro M Silva, Peter B Gothen
{"title":"共形极限与投影结构","authors":"Pedro M Silva, Peter B Gothen","doi":"10.1093/imrn/rnae142","DOIUrl":null,"url":null,"abstract":"The non-abelian Hodge correspondence maps a polystable $\\textrm{SL}(2, {\\mathbb{R}})$-Higgs bundle on a compact Riemann surface $X$ of genus $g \\geq 2$ to a connection that, in some cases, is the holonomy of a branched hyperbolic structure. Gaiotto’s conformal limit maps the same bundle to a partial oper, that is, to a connection whose holonomy is that of a branched complex projective structure compatible with $X$. In this article, we show how these are both instances of the same phenomenon: the family of connections appearing in the conformal limit can be understood as a family of complex projective structures, deforming the hyperbolic ones into the ones compatible with $X$. We also show that, for zero Toledo invariant, this deformation is optimal, inducing a geodesic on Teichmüller’s space.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Conformal Limit and Projective Structures\",\"authors\":\"Pedro M Silva, Peter B Gothen\",\"doi\":\"10.1093/imrn/rnae142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The non-abelian Hodge correspondence maps a polystable $\\\\textrm{SL}(2, {\\\\mathbb{R}})$-Higgs bundle on a compact Riemann surface $X$ of genus $g \\\\geq 2$ to a connection that, in some cases, is the holonomy of a branched hyperbolic structure. Gaiotto’s conformal limit maps the same bundle to a partial oper, that is, to a connection whose holonomy is that of a branched complex projective structure compatible with $X$. In this article, we show how these are both instances of the same phenomenon: the family of connections appearing in the conformal limit can be understood as a family of complex projective structures, deforming the hyperbolic ones into the ones compatible with $X$. We also show that, for zero Toledo invariant, this deformation is optimal, inducing a geodesic on Teichmüller’s space.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非阿贝尔霍奇对应关系将属$g \geq 2$的紧凑黎曼曲面$X$上的多稳$\textrm{SL}(2, {\mathbb{R}})$-希格斯束映射为一种连接,在某些情况下,这种连接是支双曲结构的全局性。Gaiotto的共形极限将同一束映射为部分操作,即映射为整体性与$X$相容的支化复射结构的连接。在本文中,我们将展示这两种情况如何是同一现象的实例:在保形极限中出现的连接系可以理解为复射结构系,将双曲结构变形为与 $X$ 兼容的结构。我们还证明,对于零托莱多不变量,这种变形是最佳的,会在泰赫米勒空间上产生一个大地线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Conformal Limit and Projective Structures
The non-abelian Hodge correspondence maps a polystable $\textrm{SL}(2, {\mathbb{R}})$-Higgs bundle on a compact Riemann surface $X$ of genus $g \geq 2$ to a connection that, in some cases, is the holonomy of a branched hyperbolic structure. Gaiotto’s conformal limit maps the same bundle to a partial oper, that is, to a connection whose holonomy is that of a branched complex projective structure compatible with $X$. In this article, we show how these are both instances of the same phenomenon: the family of connections appearing in the conformal limit can be understood as a family of complex projective structures, deforming the hyperbolic ones into the ones compatible with $X$. We also show that, for zero Toledo invariant, this deformation is optimal, inducing a geodesic on Teichmüller’s space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信