{"title":"Fock 空间上的广义 Volterra 积分算子","authors":"Yongqing Liu","doi":"10.1007/s11785-024-01573-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we extend the Voleterra integral operator <span>\\(V_g\\)</span> and its companion <span>\\(J_g\\)</span> to integral operator </p><span>$$\\begin{aligned} T_g^{n,m}f(z)=\\int _0^z f^{(n)}(w) g^{(m)}(w)dw. \\end{aligned}$$</span><p>Using a unified approach, we completely characterize the boundedness and compactness of <span>\\(T_g^{n,m}\\)</span> from one Fock space <span>\\(F_\\alpha ^p\\)</span> to another <span>\\(F_\\beta ^q\\)</span> for <span>\\(0<p,q\\le \\infty \\)</span>, <span>\\(0<\\alpha ,\\beta <\\infty \\)</span>. As a surprising case, we obtain that the boundedness (compactness) of <span>\\(V_g\\)</span> and <span>\\(J_g\\)</span> from <span>\\(F_\\alpha ^p\\)</span> to <span>\\(F_\\beta ^q\\)</span> is equivalent when the weight parameter <span>\\(\\alpha <\\beta \\)</span>. We also estimate the norms and essential norms of <span>\\(T_g^{n,m}\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Volterra Integral Operators on Fock Spaces\",\"authors\":\"Yongqing Liu\",\"doi\":\"10.1007/s11785-024-01573-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we extend the Voleterra integral operator <span>\\\\(V_g\\\\)</span> and its companion <span>\\\\(J_g\\\\)</span> to integral operator </p><span>$$\\\\begin{aligned} T_g^{n,m}f(z)=\\\\int _0^z f^{(n)}(w) g^{(m)}(w)dw. \\\\end{aligned}$$</span><p>Using a unified approach, we completely characterize the boundedness and compactness of <span>\\\\(T_g^{n,m}\\\\)</span> from one Fock space <span>\\\\(F_\\\\alpha ^p\\\\)</span> to another <span>\\\\(F_\\\\beta ^q\\\\)</span> for <span>\\\\(0<p,q\\\\le \\\\infty \\\\)</span>, <span>\\\\(0<\\\\alpha ,\\\\beta <\\\\infty \\\\)</span>. As a surprising case, we obtain that the boundedness (compactness) of <span>\\\\(V_g\\\\)</span> and <span>\\\\(J_g\\\\)</span> from <span>\\\\(F_\\\\alpha ^p\\\\)</span> to <span>\\\\(F_\\\\beta ^q\\\\)</span> is equivalent when the weight parameter <span>\\\\(\\\\alpha <\\\\beta \\\\)</span>. We also estimate the norms and essential norms of <span>\\\\(T_g^{n,m}\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01573-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01573-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们将 Voleterra 积分算子 (V_g\)及其同伴 (J_g\)扩展为积分算子 $$\begin{aligned}T_g^{n,m}f(z)=\int _0^z f^{(n)}(w) g^{(m)}(w)dw.\end{aligned}$Using a unified approach, we completely characterize the boundedness and compactness of \(T_g^{n,m}\) from one Fock space \(F_\alpha ^p\) to another \(F_\beta ^q\) for \(0<p,q\le \infty \), \(0<\alpha ,\beta <\infty \)。作为一个令人惊讶的案例,我们得到当权重参数为(\alpha <\beta\ )时,从(F_\alpha ^p\)到(F_\beta ^q\ )的(V_g\ )和(J_g\ )的有界性(紧凑性)是等价的。我们还估算了 \(T_g^{n,m}\) 的规范和基本规范。
Using a unified approach, we completely characterize the boundedness and compactness of \(T_g^{n,m}\) from one Fock space \(F_\alpha ^p\) to another \(F_\beta ^q\) for \(0<p,q\le \infty \), \(0<\alpha ,\beta <\infty \). As a surprising case, we obtain that the boundedness (compactness) of \(V_g\) and \(J_g\) from \(F_\alpha ^p\) to \(F_\beta ^q\) is equivalent when the weight parameter \(\alpha <\beta \). We also estimate the norms and essential norms of \(T_g^{n,m}\).