关于超图中的A遍数

IF 0.6 3区 数学 Q3 MATHEMATICS
János Barát, Dániel Gerbner, Anastasia Halfpap
{"title":"关于超图中的A遍数","authors":"János Barát, Dániel Gerbner, Anastasia Halfpap","doi":"10.1007/s10998-024-00586-1","DOIUrl":null,"url":null,"abstract":"<p>A set <i>S</i> of vertices in a hypergraph is <i>strongly independent</i> if every hyperedge shares at most one vertex with <i>S</i>. We prove a sharp result for the number of maximal strongly independent sets in a 3-uniform hypergraph analogous to the Moon-Moser theorem. Given an <i>r</i>-uniform hypergraph <span>\\({{\\mathcal {H}}}\\)</span> and a non-empty set <i>A</i> of non-negative integers, we say that a set <i>S</i> is an <i>A</i>-<i>transversal</i> of <span>\\({{\\mathcal {H}}}\\)</span> if for any hyperedge <i>H</i> of <span>\\({{\\mathcal {H}}}\\)</span>, we have <span>\\(|H\\cap S| \\in A\\)</span>. Independent sets are <span>\\(\\{0,1,\\dots ,r{-}1\\}\\)</span>-transversals, while strongly independent sets are <span>\\(\\{0,1\\}\\)</span>-transversals. Note that for some sets <i>A</i>, there may exist hypergraphs without any <i>A</i>-transversals. We study the maximum number of <i>A</i>-transversals for every <i>A</i>, but we focus on the more natural sets, <span>\\(A=\\{a\\}\\)</span>, <span>\\(A=\\{0,1,\\dots ,a\\}\\)</span> or <i>A</i> being the set of odd integers or the set of even integers.\n</p>","PeriodicalId":49706,"journal":{"name":"Periodica Mathematica Hungarica","volume":"34 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the number of A-transversals in hypergraphs\",\"authors\":\"János Barát, Dániel Gerbner, Anastasia Halfpap\",\"doi\":\"10.1007/s10998-024-00586-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A set <i>S</i> of vertices in a hypergraph is <i>strongly independent</i> if every hyperedge shares at most one vertex with <i>S</i>. We prove a sharp result for the number of maximal strongly independent sets in a 3-uniform hypergraph analogous to the Moon-Moser theorem. Given an <i>r</i>-uniform hypergraph <span>\\\\({{\\\\mathcal {H}}}\\\\)</span> and a non-empty set <i>A</i> of non-negative integers, we say that a set <i>S</i> is an <i>A</i>-<i>transversal</i> of <span>\\\\({{\\\\mathcal {H}}}\\\\)</span> if for any hyperedge <i>H</i> of <span>\\\\({{\\\\mathcal {H}}}\\\\)</span>, we have <span>\\\\(|H\\\\cap S| \\\\in A\\\\)</span>. Independent sets are <span>\\\\(\\\\{0,1,\\\\dots ,r{-}1\\\\}\\\\)</span>-transversals, while strongly independent sets are <span>\\\\(\\\\{0,1\\\\}\\\\)</span>-transversals. Note that for some sets <i>A</i>, there may exist hypergraphs without any <i>A</i>-transversals. We study the maximum number of <i>A</i>-transversals for every <i>A</i>, but we focus on the more natural sets, <span>\\\\(A=\\\\{a\\\\}\\\\)</span>, <span>\\\\(A=\\\\{0,1,\\\\dots ,a\\\\}\\\\)</span> or <i>A</i> being the set of odd integers or the set of even integers.\\n</p>\",\"PeriodicalId\":49706,\"journal\":{\"name\":\"Periodica Mathematica Hungarica\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-024-00586-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00586-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果每个超边都与 S 共享最多一个顶点,那么超图中的顶点集合 S 就是强独立的。我们证明了一个类似于 Moon-Moser 定理的 3-Uniform 超图中最大强独立集合数的尖锐结果。给定一个 r-Uniform 超图 \({{\mathcal {H}}}\) 和一个非空的非负整数集合 A,如果对于 \({{\mathcal {H}}}\) 的任何超边 H,我们有 \(|H\cap S| \in A\) ,那么我们说集合 S 是 \({{\mathcal {H}}\) 的 A-横向。)独立集是 \(\{0,1,\dots ,r{-}1\})-遍历,而强独立集是 \(\{0,1\}\)- 遍历。需要注意的是,对于某些集合 A,可能存在没有任何 A-transversals的超图。我们研究了每个A的最大A遍历数,但我们关注的是更自然的集合,如(A=\{a\}\)、(A=\{0,1,\dots ,a\}\)或A是奇数整数集或偶数整数集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the number of A-transversals in hypergraphs

A set S of vertices in a hypergraph is strongly independent if every hyperedge shares at most one vertex with S. We prove a sharp result for the number of maximal strongly independent sets in a 3-uniform hypergraph analogous to the Moon-Moser theorem. Given an r-uniform hypergraph \({{\mathcal {H}}}\) and a non-empty set A of non-negative integers, we say that a set S is an A-transversal of \({{\mathcal {H}}}\) if for any hyperedge H of \({{\mathcal {H}}}\), we have \(|H\cap S| \in A\). Independent sets are \(\{0,1,\dots ,r{-}1\}\)-transversals, while strongly independent sets are \(\{0,1\}\)-transversals. Note that for some sets A, there may exist hypergraphs without any A-transversals. We study the maximum number of A-transversals for every A, but we focus on the more natural sets, \(A=\{a\}\), \(A=\{0,1,\dots ,a\}\) or A being the set of odd integers or the set of even integers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: Periodica Mathematica Hungarica is devoted to publishing research articles in all areas of pure and applied mathematics as well as theoretical computer science. To be published in the Periodica, a paper must be correct, new, and significant. Very strong submissions (upon the consent of the author) will be redirected to Acta Mathematica Hungarica. Periodica Mathematica Hungarica is the journal of the Hungarian Mathematical Society (János Bolyai Mathematical Society). The main profile of the journal is in pure mathematics, being open to applied mathematical papers with significant mathematical content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信