关于 Kp,1$mathcal {K}_{p,1}$ 定理的几点评论

Pub Date : 2024-07-04 DOI:10.1002/mana.202400004
Yeongrak Kim, Hyunsuk Moon, Euisung Park
{"title":"关于 Kp,1$mathcal {K}_{p,1}$ 定理的几点评论","authors":"Yeongrak Kim,&nbsp;Hyunsuk Moon,&nbsp;Euisung Park","doi":"10.1002/mana.202400004","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> be a non-degenerate projective irreducible variety of dimension <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n \\ge 1$</annotation>\n </semantics></math>, degree <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>, and codimension <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$e \\ge 2$</annotation>\n </semantics></math> over an algebraically closed field <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$\\mathbb {K}$</annotation>\n </semantics></math> of characteristic 0. Let <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>β</mi>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\beta _{p,q} (X)$</annotation>\n </semantics></math> be the <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(p,q)$</annotation>\n </semantics></math>th graded Betti number of <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>. Green proved the celebrating <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$\\mathcal {K}_{p,1}$</annotation>\n </semantics></math>-theorem about the vanishing of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>β</mi>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\beta _{p,1} (X)$</annotation>\n </semantics></math> for high values for <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> and potential examples of nonvanishing graded Betti numbers. Later, Nagel–Pitteloud and Brodmann–Schenzel classified varieties with nonvanishing <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>β</mi>\n <mrow>\n <mi>e</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\beta _{e-1,1}(X)$</annotation>\n </semantics></math>. It is clear that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>β</mi>\n <mrow>\n <mi>e</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>≠</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\beta _{e-1,1}(X) \\ne 0$</annotation>\n </semantics></math> when there is an <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(n+1)$</annotation>\n </semantics></math>-dimensional variety of minimal degree containing <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>, however, this is not always the case as seen in the example of the triple Veronese surface in <span></span><math>\n <semantics>\n <msup>\n <mi>P</mi>\n <mn>9</mn>\n </msup>\n <annotation>$\\mathbb {P}^9$</annotation>\n </semantics></math>.</p><p>In this paper, we completely classify varieties <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> with nonvanishing <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>β</mi>\n <mrow>\n <mi>e</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>≠</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\beta _{e-1,1}(X) \\ne 0$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> does not lie on an <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(n+1)$</annotation>\n </semantics></math>-dimensional variety of minimal degree. They are exactly cones over smooth del Pezzo varieties, whose Picard number is <span></span><math>\n <semantics>\n <mrow>\n <mo>≤</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\le n-1$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some remarks on the \\n \\n \\n K\\n \\n p\\n ,\\n 1\\n \\n \\n $\\\\mathcal {K}_{p,1}$\\n theorem\",\"authors\":\"Yeongrak Kim,&nbsp;Hyunsuk Moon,&nbsp;Euisung Park\",\"doi\":\"10.1002/mana.202400004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> be a non-degenerate projective irreducible variety of dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≥</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$n \\\\ge 1$</annotation>\\n </semantics></math>, degree <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math>, and codimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n <mo>≥</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$e \\\\ge 2$</annotation>\\n </semantics></math> over an algebraically closed field <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$\\\\mathbb {K}$</annotation>\\n </semantics></math> of characteristic 0. Let <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>β</mi>\\n <mrow>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\beta _{p,q} (X)$</annotation>\\n </semantics></math> be the <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(p,q)$</annotation>\\n </semantics></math>th graded Betti number of <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math>. Green proved the celebrating <span></span><math>\\n <semantics>\\n <msub>\\n <mi>K</mi>\\n <mrow>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <annotation>$\\\\mathcal {K}_{p,1}$</annotation>\\n </semantics></math>-theorem about the vanishing of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>β</mi>\\n <mrow>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\beta _{p,1} (X)$</annotation>\\n </semantics></math> for high values for <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math> and potential examples of nonvanishing graded Betti numbers. Later, Nagel–Pitteloud and Brodmann–Schenzel classified varieties with nonvanishing <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>β</mi>\\n <mrow>\\n <mi>e</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\beta _{e-1,1}(X)$</annotation>\\n </semantics></math>. It is clear that <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>β</mi>\\n <mrow>\\n <mi>e</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>≠</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\beta _{e-1,1}(X) \\\\ne 0$</annotation>\\n </semantics></math> when there is an <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(n+1)$</annotation>\\n </semantics></math>-dimensional variety of minimal degree containing <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math>, however, this is not always the case as seen in the example of the triple Veronese surface in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>P</mi>\\n <mn>9</mn>\\n </msup>\\n <annotation>$\\\\mathbb {P}^9$</annotation>\\n </semantics></math>.</p><p>In this paper, we completely classify varieties <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> with nonvanishing <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>β</mi>\\n <mrow>\\n <mi>e</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>≠</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\beta _{e-1,1}(X) \\\\ne 0$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> does not lie on an <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(n+1)$</annotation>\\n </semantics></math>-dimensional variety of minimal degree. They are exactly cones over smooth del Pezzo varieties, whose Picard number is <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>≤</mo>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\le n-1$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 是一个非退化的投影不还原变种,其维数 ,度数 ,和编码维数都在特征为 0 的代数闭域上。格林证明了关于分级贝蒂数高值消失的庆祝定理,以及非消失分级贝蒂数的潜在例子。后来,纳格尔-皮特鲁德(Nagel-Pitteloud)和布罗德曼-申泽尔(Brodmann-Schenzel)将具有非消失的 .很明显,当存在一个包含......的极小度的-维综时,情况并非总是如此,正如在......的三维维罗尼斯曲面的例子中所看到的那样。它们正好是光滑 del Pezzo varieties 上的圆锥,其皮卡德数为 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Some remarks on the K p , 1 $\mathcal {K}_{p,1}$ theorem

Let X $X$ be a non-degenerate projective irreducible variety of dimension n 1 $n \ge 1$ , degree d $d$ , and codimension e 2 $e \ge 2$ over an algebraically closed field K $\mathbb {K}$ of characteristic 0. Let β p , q ( X ) $\beta _{p,q} (X)$ be the ( p , q ) $(p,q)$ th graded Betti number of X $X$ . Green proved the celebrating K p , 1 $\mathcal {K}_{p,1}$ -theorem about the vanishing of β p , 1 ( X ) $\beta _{p,1} (X)$ for high values for p $p$ and potential examples of nonvanishing graded Betti numbers. Later, Nagel–Pitteloud and Brodmann–Schenzel classified varieties with nonvanishing β e 1 , 1 ( X ) $\beta _{e-1,1}(X)$ . It is clear that β e 1 , 1 ( X ) 0 $\beta _{e-1,1}(X) \ne 0$ when there is an ( n + 1 ) $(n+1)$ -dimensional variety of minimal degree containing X $X$ , however, this is not always the case as seen in the example of the triple Veronese surface in P 9 $\mathbb {P}^9$ .

In this paper, we completely classify varieties X $X$ with nonvanishing β e 1 , 1 ( X ) 0 $\beta _{e-1,1}(X) \ne 0$ such that X $X$ does not lie on an ( n + 1 ) $(n+1)$ -dimensional variety of minimal degree. They are exactly cones over smooth del Pezzo varieties, whose Picard number is n 1 $\le n-1$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信