求助PDF
{"title":"关于 Kp,1$mathcal {K}_{p,1}$ 定理的几点评论","authors":"Yeongrak Kim, Hyunsuk Moon, Euisung Park","doi":"10.1002/mana.202400004","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> be a non-degenerate projective irreducible variety of dimension <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n \\ge 1$</annotation>\n </semantics></math>, degree <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>, and codimension <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$e \\ge 2$</annotation>\n </semantics></math> over an algebraically closed field <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$\\mathbb {K}$</annotation>\n </semantics></math> of characteristic 0. Let <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>β</mi>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\beta _{p,q} (X)$</annotation>\n </semantics></math> be the <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(p,q)$</annotation>\n </semantics></math>th graded Betti number of <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>. Green proved the celebrating <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$\\mathcal {K}_{p,1}$</annotation>\n </semantics></math>-theorem about the vanishing of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>β</mi>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\beta _{p,1} (X)$</annotation>\n </semantics></math> for high values for <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> and potential examples of nonvanishing graded Betti numbers. Later, Nagel–Pitteloud and Brodmann–Schenzel classified varieties with nonvanishing <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>β</mi>\n <mrow>\n <mi>e</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\beta _{e-1,1}(X)$</annotation>\n </semantics></math>. It is clear that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>β</mi>\n <mrow>\n <mi>e</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>≠</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\beta _{e-1,1}(X) \\ne 0$</annotation>\n </semantics></math> when there is an <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(n+1)$</annotation>\n </semantics></math>-dimensional variety of minimal degree containing <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>, however, this is not always the case as seen in the example of the triple Veronese surface in <span></span><math>\n <semantics>\n <msup>\n <mi>P</mi>\n <mn>9</mn>\n </msup>\n <annotation>$\\mathbb {P}^9$</annotation>\n </semantics></math>.</p><p>In this paper, we completely classify varieties <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> with nonvanishing <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>β</mi>\n <mrow>\n <mi>e</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>≠</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\beta _{e-1,1}(X) \\ne 0$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> does not lie on an <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(n+1)$</annotation>\n </semantics></math>-dimensional variety of minimal degree. They are exactly cones over smooth del Pezzo varieties, whose Picard number is <span></span><math>\n <semantics>\n <mrow>\n <mo>≤</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\le n-1$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some remarks on the \\n \\n \\n K\\n \\n p\\n ,\\n 1\\n \\n \\n $\\\\mathcal {K}_{p,1}$\\n theorem\",\"authors\":\"Yeongrak Kim, Hyunsuk Moon, Euisung Park\",\"doi\":\"10.1002/mana.202400004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> be a non-degenerate projective irreducible variety of dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≥</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$n \\\\ge 1$</annotation>\\n </semantics></math>, degree <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math>, and codimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n <mo>≥</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$e \\\\ge 2$</annotation>\\n </semantics></math> over an algebraically closed field <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$\\\\mathbb {K}$</annotation>\\n </semantics></math> of characteristic 0. Let <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>β</mi>\\n <mrow>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\beta _{p,q} (X)$</annotation>\\n </semantics></math> be the <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(p,q)$</annotation>\\n </semantics></math>th graded Betti number of <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math>. Green proved the celebrating <span></span><math>\\n <semantics>\\n <msub>\\n <mi>K</mi>\\n <mrow>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <annotation>$\\\\mathcal {K}_{p,1}$</annotation>\\n </semantics></math>-theorem about the vanishing of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>β</mi>\\n <mrow>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\beta _{p,1} (X)$</annotation>\\n </semantics></math> for high values for <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math> and potential examples of nonvanishing graded Betti numbers. Later, Nagel–Pitteloud and Brodmann–Schenzel classified varieties with nonvanishing <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>β</mi>\\n <mrow>\\n <mi>e</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\beta _{e-1,1}(X)$</annotation>\\n </semantics></math>. It is clear that <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>β</mi>\\n <mrow>\\n <mi>e</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>≠</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\beta _{e-1,1}(X) \\\\ne 0$</annotation>\\n </semantics></math> when there is an <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(n+1)$</annotation>\\n </semantics></math>-dimensional variety of minimal degree containing <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math>, however, this is not always the case as seen in the example of the triple Veronese surface in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>P</mi>\\n <mn>9</mn>\\n </msup>\\n <annotation>$\\\\mathbb {P}^9$</annotation>\\n </semantics></math>.</p><p>In this paper, we completely classify varieties <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> with nonvanishing <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>β</mi>\\n <mrow>\\n <mi>e</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>≠</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\beta _{e-1,1}(X) \\\\ne 0$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> does not lie on an <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(n+1)$</annotation>\\n </semantics></math>-dimensional variety of minimal degree. They are exactly cones over smooth del Pezzo varieties, whose Picard number is <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>≤</mo>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\le n-1$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用