考虑蒸汽旁路排放的压水堆一次回路在 SBLOCAs 条件下的响应特性

IF 3.6 1区 物理与天体物理 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Shuai Yang, Xiang-Bin Li, Yu-Sheng Liu, Jia‑Ning Xu, De‑Chen Zhang
{"title":"考虑蒸汽旁路排放的压水堆一次回路在 SBLOCAs 条件下的响应特性","authors":"Shuai Yang, Xiang-Bin Li, Yu-Sheng Liu, Jia‑Ning Xu, De‑Chen Zhang","doi":"10.1007/s41365-024-01457-7","DOIUrl":null,"url":null,"abstract":"<p>Small-break superposed station blackout (SBO) accidents are the basic design accidents of nuclear power plants. Under the condition of a small break in the cold leg, SBO further increases the severity of the accident, and the steam bypass discharging system (GCT) in the second circuit can play an important role in guaranteeing core safety. To explore the influence of the GCT on the thermal–hydraulic characteristics of the primary circuit, RELAP5 software was used to establish a numerical model based on a typical pressurized water reactor nuclear power plant. Five different small breaks in the cold-leg superposed SBO were selected, and the impact of the GCT operation on the transient response characteristics of the primary and secondary circuit systems was analyzed. The results show that the GCT plays an indispensable role in core heat removal during an accident; otherwise, core safety cannot be guaranteed. The GCT was used in conjunction with the primary safety injection system during the placement process. When the break diameter was greater than a certain critical value, the core cooling rate could not be guaranteed to be less than 100 K/h; however, the core remained in a safe state.</p>","PeriodicalId":19177,"journal":{"name":"Nuclear Science and Techniques","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response characteristics of PWR primary circuit under SBLOCAs considering steam bypass discharging\",\"authors\":\"Shuai Yang, Xiang-Bin Li, Yu-Sheng Liu, Jia‑Ning Xu, De‑Chen Zhang\",\"doi\":\"10.1007/s41365-024-01457-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Small-break superposed station blackout (SBO) accidents are the basic design accidents of nuclear power plants. Under the condition of a small break in the cold leg, SBO further increases the severity of the accident, and the steam bypass discharging system (GCT) in the second circuit can play an important role in guaranteeing core safety. To explore the influence of the GCT on the thermal–hydraulic characteristics of the primary circuit, RELAP5 software was used to establish a numerical model based on a typical pressurized water reactor nuclear power plant. Five different small breaks in the cold-leg superposed SBO were selected, and the impact of the GCT operation on the transient response characteristics of the primary and secondary circuit systems was analyzed. The results show that the GCT plays an indispensable role in core heat removal during an accident; otherwise, core safety cannot be guaranteed. The GCT was used in conjunction with the primary safety injection system during the placement process. When the break diameter was greater than a certain critical value, the core cooling rate could not be guaranteed to be less than 100 K/h; however, the core remained in a safe state.</p>\",\"PeriodicalId\":19177,\"journal\":{\"name\":\"Nuclear Science and Techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Science and Techniques\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s41365-024-01457-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Science and Techniques","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s41365-024-01457-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

小断口叠加站停电(SBO)事故是核电站的基本设计事故。在冷段小断口的条件下,SBO 会进一步增加事故的严重性,而二回路蒸汽旁路排放系统(GCT)在保证堆芯安全方面可以发挥重要作用。为了探讨 GCT 对一回路热工水力特性的影响,我们使用 RELAP5 软件建立了一个基于典型压水堆核电站的数值模型。在冷腿叠加 SBO 中选择了五个不同的小断口,分析了 GCT 运行对一次回路和二次回路系统瞬态响应特性的影响。结果表明,GCT 在事故期间的堆芯散热中发挥着不可或缺的作用,否则堆芯安全将无法得到保证。在安置过程中,GCT 与一级安全喷射系统结合使用。当断口直径大于某个临界值时,无法保证堆芯冷却速度小于 100 K/h,但堆芯仍处于安全状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Response characteristics of PWR primary circuit under SBLOCAs considering steam bypass discharging

Response characteristics of PWR primary circuit under SBLOCAs considering steam bypass discharging

Small-break superposed station blackout (SBO) accidents are the basic design accidents of nuclear power plants. Under the condition of a small break in the cold leg, SBO further increases the severity of the accident, and the steam bypass discharging system (GCT) in the second circuit can play an important role in guaranteeing core safety. To explore the influence of the GCT on the thermal–hydraulic characteristics of the primary circuit, RELAP5 software was used to establish a numerical model based on a typical pressurized water reactor nuclear power plant. Five different small breaks in the cold-leg superposed SBO were selected, and the impact of the GCT operation on the transient response characteristics of the primary and secondary circuit systems was analyzed. The results show that the GCT plays an indispensable role in core heat removal during an accident; otherwise, core safety cannot be guaranteed. The GCT was used in conjunction with the primary safety injection system during the placement process. When the break diameter was greater than a certain critical value, the core cooling rate could not be guaranteed to be less than 100 K/h; however, the core remained in a safe state.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Science and Techniques
Nuclear Science and Techniques 物理-核科学技术
CiteScore
5.10
自引率
39.30%
发文量
141
审稿时长
5 months
期刊介绍: Nuclear Science and Techniques (NST) reports scientific findings, technical advances and important results in the fields of nuclear science and techniques. The aim of this periodical is to stimulate cross-fertilization of knowledge among scientists and engineers working in the fields of nuclear research. Scope covers the following subjects: • Synchrotron radiation applications, beamline technology; • Accelerator, ray technology and applications; • Nuclear chemistry, radiochemistry, radiopharmaceuticals, nuclear medicine; • Nuclear electronics and instrumentation; • Nuclear physics and interdisciplinary research; • Nuclear energy science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信