{"title":"用于肺囊性纤维化疾病非病毒基因疗法的高支化聚 β-氨基酯/CpG-depleted CFTR 质粒纳米颗粒","authors":"Bei Qiu, Darío Manzanares, Yinghao Li, Xianqing Wang, Zishan Li, Sébastien Terreau, Zhonglei He, Jing Lyu, Wenxin Wang, Irene Lara-Sáez","doi":"10.1016/j.omtm.2024.101292","DOIUrl":null,"url":null,"abstract":"Lung cystic fibrosis (CF) is a lethal inherited disease caused by mutations in the CF transmembrane conductance regulator () gene, leading to a dysfunctional CFTR protein. Gene therapy offers promise for the treatment of lung CF. However, the development and clinical application of CF gene therapy have long been hampered by the absence of safe and highly efficient delivery vectors. In this work, a novel polymer-based gene replacement treatment approach was developed. A series of poly (β-amino esters) (PAEs) with various topological structures and chemical compositions were screened to create non-viral therapeutic systems for CFTR restoration in lung CF disease. A nanoparticle, formed by the selected highly branched PAE (HPAE) with a CpG-depleted CFTR plasmid, demonstrated gene expression and biocompatibility in lung epithelial cells, outperforming leading commercial gene transfection reagents such as Lipofectamine 3000 and Xfect. The newly developed gene therapy system successfully restored functional CFTR protein production in lung CF epithelial monolayers. This therapeutic approach holds great potential for use as an efficient and safe non-viral treatment for CF patients.","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly branched poly β-amino ester/CpG-depleted CFTR plasmid nanoparticles for non-viral gene therapy in lung cystic fibrosis disease\",\"authors\":\"Bei Qiu, Darío Manzanares, Yinghao Li, Xianqing Wang, Zishan Li, Sébastien Terreau, Zhonglei He, Jing Lyu, Wenxin Wang, Irene Lara-Sáez\",\"doi\":\"10.1016/j.omtm.2024.101292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung cystic fibrosis (CF) is a lethal inherited disease caused by mutations in the CF transmembrane conductance regulator () gene, leading to a dysfunctional CFTR protein. Gene therapy offers promise for the treatment of lung CF. However, the development and clinical application of CF gene therapy have long been hampered by the absence of safe and highly efficient delivery vectors. In this work, a novel polymer-based gene replacement treatment approach was developed. A series of poly (β-amino esters) (PAEs) with various topological structures and chemical compositions were screened to create non-viral therapeutic systems for CFTR restoration in lung CF disease. A nanoparticle, formed by the selected highly branched PAE (HPAE) with a CpG-depleted CFTR plasmid, demonstrated gene expression and biocompatibility in lung epithelial cells, outperforming leading commercial gene transfection reagents such as Lipofectamine 3000 and Xfect. The newly developed gene therapy system successfully restored functional CFTR protein production in lung CF epithelial monolayers. This therapeutic approach holds great potential for use as an efficient and safe non-viral treatment for CF patients.\",\"PeriodicalId\":54333,\"journal\":{\"name\":\"Molecular Therapy-Methods & Clinical Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy-Methods & Clinical Development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.omtm.2024.101292\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy-Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2024.101292","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Highly branched poly β-amino ester/CpG-depleted CFTR plasmid nanoparticles for non-viral gene therapy in lung cystic fibrosis disease
Lung cystic fibrosis (CF) is a lethal inherited disease caused by mutations in the CF transmembrane conductance regulator () gene, leading to a dysfunctional CFTR protein. Gene therapy offers promise for the treatment of lung CF. However, the development and clinical application of CF gene therapy have long been hampered by the absence of safe and highly efficient delivery vectors. In this work, a novel polymer-based gene replacement treatment approach was developed. A series of poly (β-amino esters) (PAEs) with various topological structures and chemical compositions were screened to create non-viral therapeutic systems for CFTR restoration in lung CF disease. A nanoparticle, formed by the selected highly branched PAE (HPAE) with a CpG-depleted CFTR plasmid, demonstrated gene expression and biocompatibility in lung epithelial cells, outperforming leading commercial gene transfection reagents such as Lipofectamine 3000 and Xfect. The newly developed gene therapy system successfully restored functional CFTR protein production in lung CF epithelial monolayers. This therapeutic approach holds great potential for use as an efficient and safe non-viral treatment for CF patients.
期刊介绍:
The aim of Molecular Therapy—Methods & Clinical Development is to build upon the success of Molecular Therapy in publishing important peer-reviewed methods and procedures, as well as translational advances in the broad array of fields under the molecular therapy umbrella.
Topics of particular interest within the journal''s scope include:
Gene vector engineering and production,
Methods for targeted genome editing and engineering,
Methods and technology development for cell reprogramming and directed differentiation of pluripotent cells,
Methods for gene and cell vector delivery,
Development of biomaterials and nanoparticles for applications in gene and cell therapy and regenerative medicine,
Analysis of gene and cell vector biodistribution and tracking,
Pharmacology/toxicology studies of new and next-generation vectors,
Methods for cell isolation, engineering, culture, expansion, and transplantation,
Cell processing, storage, and banking for therapeutic application,
Preclinical and QC/QA assay development,
Translational and clinical scale-up and Good Manufacturing procedures and process development,
Clinical protocol development,
Computational and bioinformatic methods for analysis, modeling, or visualization of biological data,
Negotiating the regulatory approval process and obtaining such approval for clinical trials.