{"title":"使用硅微oring 谐振器的全光二进制到灰码转换器的数值分析","authors":"Manjur Hossain, Kalimuddin Mondal","doi":"10.3103/S1060992X24700085","DOIUrl":null,"url":null,"abstract":"<p>Present manuscript designs and analyzes numerically all-optical binary-to-gray code (BTGC) converter utilizing silicon microring resonator. A waveguide-based silicon microring resonator has been employed to achieve optical switching under low-power conditions using the two-photon absorption effect. Gray code (GC) is a binary numerical system in which two consecutive codes distinguished by only one bit. The GC is critical in optics communication because it prevents spurious output from optical switches and facilitates error correction in optical communications. MATLAB is used to design and analyze the architecture at almost 260 Gbps operational speed. The faster response times and compact design of the demonstrated circuits make them especially useful for optical communication systems. Performance indicating factors evaluated from MATLAB results and analyzed. Design parameters that are optimized have been chosen in order to construct the model practically.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 2","pages":"193 - 204"},"PeriodicalIF":1.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Analysis of All-Optical Binary to Gray Code Converter Using Silicon Microring Resonator\",\"authors\":\"Manjur Hossain, Kalimuddin Mondal\",\"doi\":\"10.3103/S1060992X24700085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Present manuscript designs and analyzes numerically all-optical binary-to-gray code (BTGC) converter utilizing silicon microring resonator. A waveguide-based silicon microring resonator has been employed to achieve optical switching under low-power conditions using the two-photon absorption effect. Gray code (GC) is a binary numerical system in which two consecutive codes distinguished by only one bit. The GC is critical in optics communication because it prevents spurious output from optical switches and facilitates error correction in optical communications. MATLAB is used to design and analyze the architecture at almost 260 Gbps operational speed. The faster response times and compact design of the demonstrated circuits make them especially useful for optical communication systems. Performance indicating factors evaluated from MATLAB results and analyzed. Design parameters that are optimized have been chosen in order to construct the model practically.</p>\",\"PeriodicalId\":721,\"journal\":{\"name\":\"Optical Memory and Neural Networks\",\"volume\":\"33 2\",\"pages\":\"193 - 204\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Memory and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1060992X24700085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24700085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Numerical Analysis of All-Optical Binary to Gray Code Converter Using Silicon Microring Resonator
Present manuscript designs and analyzes numerically all-optical binary-to-gray code (BTGC) converter utilizing silicon microring resonator. A waveguide-based silicon microring resonator has been employed to achieve optical switching under low-power conditions using the two-photon absorption effect. Gray code (GC) is a binary numerical system in which two consecutive codes distinguished by only one bit. The GC is critical in optics communication because it prevents spurious output from optical switches and facilitates error correction in optical communications. MATLAB is used to design and analyze the architecture at almost 260 Gbps operational speed. The faster response times and compact design of the demonstrated circuits make them especially useful for optical communication systems. Performance indicating factors evaluated from MATLAB results and analyzed. Design parameters that are optimized have been chosen in order to construct the model practically.
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.