通过线性预波的谱序列

Muriel Livernet, Sarah Whitehouse
{"title":"通过线性预波的谱序列","authors":"Muriel Livernet, Sarah Whitehouse","doi":"arxiv-2406.02777","DOIUrl":null,"url":null,"abstract":"We study homotopy theory of the category of spectral sequences with respect\nto the class of weak equivalences given by maps which are quasi-isomorphisms on\na fixed page. We introduce the category of extended spectral sequences and show\nthat this is bicomplete by analysis of a certain linear presheaf category\nmodelled on discs. We endow the category of extended spectral sequences with\nvarious model category structures, restricting to give the almost Brown\ncategory structures on spectral sequences of our earlier work. One of these has\nthe property that spectral sequences is a homotopically full subcategory. By\nresults of Meier, this exhibits the category of spectral sequences as a fibrant\nobject in the Barwick-Kan model structure on relative categories, that is, it\ngives a model for an infinity category of spectral sequences. We also use the\npresheaf approach to define two d\\'ecalage functors on spectral sequences, left\nand right adjoint to a shift functor, thereby clarifying prior use of the term\nd\\'ecalage in connection with spectral sequences.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral sequences via linear presheaves\",\"authors\":\"Muriel Livernet, Sarah Whitehouse\",\"doi\":\"arxiv-2406.02777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study homotopy theory of the category of spectral sequences with respect\\nto the class of weak equivalences given by maps which are quasi-isomorphisms on\\na fixed page. We introduce the category of extended spectral sequences and show\\nthat this is bicomplete by analysis of a certain linear presheaf category\\nmodelled on discs. We endow the category of extended spectral sequences with\\nvarious model category structures, restricting to give the almost Brown\\ncategory structures on spectral sequences of our earlier work. One of these has\\nthe property that spectral sequences is a homotopically full subcategory. By\\nresults of Meier, this exhibits the category of spectral sequences as a fibrant\\nobject in the Barwick-Kan model structure on relative categories, that is, it\\ngives a model for an infinity category of spectral sequences. We also use the\\npresheaf approach to define two d\\\\'ecalage functors on spectral sequences, left\\nand right adjoint to a shift functor, thereby clarifying prior use of the term\\nd\\\\'ecalage in connection with spectral sequences.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.02777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.02777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究谱序列范畴的同调理论,该理论涉及由在固定页面上准同构的映射给出的弱等价范畴。我们引入了扩展谱序列范畴,并通过分析以圆盘为模型的某个线性预设范畴来证明这个范畴是双完备的。我们赋予扩展谱序列范畴以各种模型范畴结构,并限制给出我们早期工作中关于谱序列的近似布朗范畴结构。其中一个性质是,频谱序列是一个同向全子类。根据迈尔的研究成果,这表明谱序列范畴是相对范畴巴维-坎模型结构中的一个纤维对象,也就是说,它给出了谱序列无穷范畴的模型。我们还用resheaf方法定义了谱序列上的两个d\'ecalage函子,它们分别与一个移位函子左右相邻,从而澄清了之前使用的与谱序列有关的术语d\'ecalage。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral sequences via linear presheaves
We study homotopy theory of the category of spectral sequences with respect to the class of weak equivalences given by maps which are quasi-isomorphisms on a fixed page. We introduce the category of extended spectral sequences and show that this is bicomplete by analysis of a certain linear presheaf category modelled on discs. We endow the category of extended spectral sequences with various model category structures, restricting to give the almost Brown category structures on spectral sequences of our earlier work. One of these has the property that spectral sequences is a homotopically full subcategory. By results of Meier, this exhibits the category of spectral sequences as a fibrant object in the Barwick-Kan model structure on relative categories, that is, it gives a model for an infinity category of spectral sequences. We also use the presheaf approach to define two d\'ecalage functors on spectral sequences, left and right adjoint to a shift functor, thereby clarifying prior use of the term d\'ecalage in connection with spectral sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信