在线运输问题的近优确定性算法

Tsubasa Harada, Toshiya Itoh
{"title":"在线运输问题的近优确定性算法","authors":"Tsubasa Harada, Toshiya Itoh","doi":"arxiv-2406.03778","DOIUrl":null,"url":null,"abstract":"We propose a new deterministic algorithm called Subtree-Decomposition for the\nonline transportation problem and show that the algorithm is\n$(8m-5)$-competitive, where $m$ is the number of server sites. It has long been known that the competitive ratio of any deterministic\nalgorithm is lower bounded by $2m-1$ for this problem. On the other hand, the\nconjecture proposed by Kalyanasundaram and Pruhs in 1998 asking whether a\ndeterministic $(2m-1)$-competitive algorithm exists for the online\ntransportation problem has remained open for over two decades. The upper bound on the competitive ratio, $8m-5$, which is the result of this\npaper, is the first to come close to this conjecture, and is the best possible\nwithin a constant factor.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Nearly Optimal Deterministic Algorithm for Online Transportation Problem\",\"authors\":\"Tsubasa Harada, Toshiya Itoh\",\"doi\":\"arxiv-2406.03778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new deterministic algorithm called Subtree-Decomposition for the\\nonline transportation problem and show that the algorithm is\\n$(8m-5)$-competitive, where $m$ is the number of server sites. It has long been known that the competitive ratio of any deterministic\\nalgorithm is lower bounded by $2m-1$ for this problem. On the other hand, the\\nconjecture proposed by Kalyanasundaram and Pruhs in 1998 asking whether a\\ndeterministic $(2m-1)$-competitive algorithm exists for the online\\ntransportation problem has remained open for over two decades. The upper bound on the competitive ratio, $8m-5$, which is the result of this\\npaper, is the first to come close to this conjecture, and is the best possible\\nwithin a constant factor.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.03778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.03778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们针对在线运输问题提出了一种名为 "子树分解 "的新确定性算法,并证明该算法具有$(8m-5)$的竞争力,其中$m$是服务器站点的数量。众所周知,对于这个问题,任何确定性算法的竞争率下限都是 2m-1$。另一方面,Kalyanasundaram 和 Pruhs 于 1998 年提出的猜想,即是否存在用于在线运输问题的确定性 $(2m-1)$ 竞争算法,二十多年来一直悬而未决。本文提出的竞争率上限 $8m-5$ 是第一个接近这一猜想的结果,而且是在一个常数因子范围内的最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Nearly Optimal Deterministic Algorithm for Online Transportation Problem
We propose a new deterministic algorithm called Subtree-Decomposition for the online transportation problem and show that the algorithm is $(8m-5)$-competitive, where $m$ is the number of server sites. It has long been known that the competitive ratio of any deterministic algorithm is lower bounded by $2m-1$ for this problem. On the other hand, the conjecture proposed by Kalyanasundaram and Pruhs in 1998 asking whether a deterministic $(2m-1)$-competitive algorithm exists for the online transportation problem has remained open for over two decades. The upper bound on the competitive ratio, $8m-5$, which is the result of this paper, is the first to come close to this conjecture, and is the best possible within a constant factor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信