广义渗透界面条件下一维非连续介质中的扩散建模:理论与算法

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Elisa Baioni, Antoine Lejay, Géraldine Pichot, Giovanni Michele Porta
{"title":"广义渗透界面条件下一维非连续介质中的扩散建模:理论与算法","authors":"Elisa Baioni, Antoine Lejay, Géraldine Pichot, Giovanni Michele Porta","doi":"10.1137/23m1590846","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2202-A2223, August 2024. <br/> Abstract. Diffusive transport in media with discontinuous properties is a challenging problem that arises in many applications. This paper focuses on one dimensional discontinuous media with generalized permeable boundary conditions at the discontinuity interface. It presents novel analytical expressions from the method of images to simulate diffusive processes, such as mass or thermal transport. The analytical expressions are used to formulate a generalization of the existing Skew Brownian Motion, HYMLA, and Uffink’s method, here named as GSBM, GHYMLA, and GUM, respectively, to handle generic interface conditions. The algorithms rely upon the random walk method and are tested by simulating transport in a bimaterial and in a multilayered medium with piecewise constant properties. The results indicate that the GUM algorithm provides the best performance in terms of accuracy and computational cost. The methods proposed can be applied for simulation of a wide range of differential problems.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Diffusion in One Dimensional Discontinuous Media under Generalized Permeable Interface Conditions: Theory and Algorithms\",\"authors\":\"Elisa Baioni, Antoine Lejay, Géraldine Pichot, Giovanni Michele Porta\",\"doi\":\"10.1137/23m1590846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2202-A2223, August 2024. <br/> Abstract. Diffusive transport in media with discontinuous properties is a challenging problem that arises in many applications. This paper focuses on one dimensional discontinuous media with generalized permeable boundary conditions at the discontinuity interface. It presents novel analytical expressions from the method of images to simulate diffusive processes, such as mass or thermal transport. The analytical expressions are used to formulate a generalization of the existing Skew Brownian Motion, HYMLA, and Uffink’s method, here named as GSBM, GHYMLA, and GUM, respectively, to handle generic interface conditions. The algorithms rely upon the random walk method and are tested by simulating transport in a bimaterial and in a multilayered medium with piecewise constant properties. The results indicate that the GUM algorithm provides the best performance in terms of accuracy and computational cost. The methods proposed can be applied for simulation of a wide range of differential problems.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1590846\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1590846","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 科学计算期刊》,第 46 卷第 4 期,第 A2202-A2223 页,2024 年 8 月。 摘要非连续介质中的扩散输运是许多应用中出现的一个具有挑战性的问题。本文重点研究一维不连续介质,在不连续界面上采用广义渗透边界条件。它提出了新颖的图像法分析表达式,用于模拟质量或热传输等扩散过程。这些分析表达式用于对现有的斜布朗运动、HYMLA 和 Uffink 方法进行概括,在此分别命名为 GSBM、GHYMLA 和 GUM,以处理通用的界面条件。这些算法都依赖于随机行走法,并通过模拟双材料和具有片状常数特性的多层介质中的传输进行了测试。结果表明,GUM 算法在精度和计算成本方面表现最佳。所提出的方法可用于模拟各种微分问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Diffusion in One Dimensional Discontinuous Media under Generalized Permeable Interface Conditions: Theory and Algorithms
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2202-A2223, August 2024.
Abstract. Diffusive transport in media with discontinuous properties is a challenging problem that arises in many applications. This paper focuses on one dimensional discontinuous media with generalized permeable boundary conditions at the discontinuity interface. It presents novel analytical expressions from the method of images to simulate diffusive processes, such as mass or thermal transport. The analytical expressions are used to formulate a generalization of the existing Skew Brownian Motion, HYMLA, and Uffink’s method, here named as GSBM, GHYMLA, and GUM, respectively, to handle generic interface conditions. The algorithms rely upon the random walk method and are tested by simulating transport in a bimaterial and in a multilayered medium with piecewise constant properties. The results indicate that the GUM algorithm provides the best performance in terms of accuracy and computational cost. The methods proposed can be applied for simulation of a wide range of differential problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信