广义量子信号处理

Danial Motlagh, Nathan Wiebe
{"title":"广义量子信号处理","authors":"Danial Motlagh, Nathan Wiebe","doi":"10.1103/prxquantum.5.020368","DOIUrl":null,"url":null,"abstract":"Quantum signal processing (QSP) and quantum singular value transformation (QSVT) currently stand as the most efficient techniques for implementing functions of block-encoded matrices, a central task that lies at the heart of most prominent quantum algorithms. However, current QSP approaches face several challenges, such as the restrictions imposed on the family of achievable polynomials and the difficulty of calculating the required phase angles for specific transformations. In this paper, we present a generalized quantum signal processing (GQSP) approach, employing general SU(2) rotations as our signal-processing operators, rather than relying solely on rotations in a single basis. Our approach lifts all practical restrictions on the family of achievable transformations, with the sole remaining condition being that <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo stretchy=\"false\">|</mo></mrow><mi>P</mi><mrow><mo stretchy=\"false\">|</mo></mrow><mo>≤</mo><mn>1</mn></math>, a restriction necessary due to the unitary nature of quantum computation. Furthermore, GQSP provides a straightforward recursive formula for determining the rotation angles needed to construct the polynomials in cases where <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Q</mi></math> are known. In cases where only <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi></math> is known, we provide an efficient optimization algorithm capable of identifying in under a minute of GPU time, a corresponding <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Q</mi></math> for polynomials of degree on the order of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>7</mn></msup></math>. We further illustrate GQSP simplifies QSP-based strategies for Hamiltonian simulation, offer an optimal solution to the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ϵ</mi></math>-approximate fractional query problem that requires <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">O</mi></mrow><mrow><mo>(</mo><mo stretchy=\"false\">(</mo><mn>1</mn><mo>/</mo><mi>δ</mi><mo stretchy=\"false\">)</mo><mo>+</mo><mi>log</mi><mo></mo><mo stretchy=\"false\">(</mo><mn>1</mn><mo>/</mo><mi>ϵ</mi><mo stretchy=\"false\">)</mo><mo>)</mo></mrow></math> queries to perform where <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">O</mi></mrow><mo stretchy=\"false\">(</mo><mn>1</mn><mo>/</mo><mi>δ</mi><mo stretchy=\"false\">)</mo></math> is a proved lower bound, and introduces novel approaches for implementing bosonic operators. Moreover, we propose a novel framework for the implementation of normal matrices, demonstrating its applicability through synthesis of diagonal matrices, as well as the development of a new algorithm for convolution through synthesis of circulant matrices using only <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">O</mi></mrow><mo stretchy=\"false\">(</mo><mi>d</mi><mi>log</mi><mo></mo><mi>N</mi><mo>+</mo><msup><mi>log</mi><mn>2</mn></msup><mo></mo><mi>N</mi><mo stretchy=\"false\">)</mo></math> 1 and 2-qubit gates for a filter of lengths <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math>.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"364 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Quantum Signal Processing\",\"authors\":\"Danial Motlagh, Nathan Wiebe\",\"doi\":\"10.1103/prxquantum.5.020368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum signal processing (QSP) and quantum singular value transformation (QSVT) currently stand as the most efficient techniques for implementing functions of block-encoded matrices, a central task that lies at the heart of most prominent quantum algorithms. However, current QSP approaches face several challenges, such as the restrictions imposed on the family of achievable polynomials and the difficulty of calculating the required phase angles for specific transformations. In this paper, we present a generalized quantum signal processing (GQSP) approach, employing general SU(2) rotations as our signal-processing operators, rather than relying solely on rotations in a single basis. Our approach lifts all practical restrictions on the family of achievable transformations, with the sole remaining condition being that <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo stretchy=\\\"false\\\">|</mo></mrow><mi>P</mi><mrow><mo stretchy=\\\"false\\\">|</mo></mrow><mo>≤</mo><mn>1</mn></math>, a restriction necessary due to the unitary nature of quantum computation. Furthermore, GQSP provides a straightforward recursive formula for determining the rotation angles needed to construct the polynomials in cases where <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>P</mi></math> and <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Q</mi></math> are known. In cases where only <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>P</mi></math> is known, we provide an efficient optimization algorithm capable of identifying in under a minute of GPU time, a corresponding <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Q</mi></math> for polynomials of degree on the order of <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mn>10</mn><mn>7</mn></msup></math>. We further illustrate GQSP simplifies QSP-based strategies for Hamiltonian simulation, offer an optimal solution to the <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ϵ</mi></math>-approximate fractional query problem that requires <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"script\\\">O</mi></mrow><mrow><mo>(</mo><mo stretchy=\\\"false\\\">(</mo><mn>1</mn><mo>/</mo><mi>δ</mi><mo stretchy=\\\"false\\\">)</mo><mo>+</mo><mi>log</mi><mo></mo><mo stretchy=\\\"false\\\">(</mo><mn>1</mn><mo>/</mo><mi>ϵ</mi><mo stretchy=\\\"false\\\">)</mo><mo>)</mo></mrow></math> queries to perform where <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"script\\\">O</mi></mrow><mo stretchy=\\\"false\\\">(</mo><mn>1</mn><mo>/</mo><mi>δ</mi><mo stretchy=\\\"false\\\">)</mo></math> is a proved lower bound, and introduces novel approaches for implementing bosonic operators. Moreover, we propose a novel framework for the implementation of normal matrices, demonstrating its applicability through synthesis of diagonal matrices, as well as the development of a new algorithm for convolution through synthesis of circulant matrices using only <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"script\\\">O</mi></mrow><mo stretchy=\\\"false\\\">(</mo><mi>d</mi><mi>log</mi><mo></mo><mi>N</mi><mo>+</mo><msup><mi>log</mi><mn>2</mn></msup><mo></mo><mi>N</mi><mo stretchy=\\\"false\\\">)</mo></math> 1 and 2-qubit gates for a filter of lengths <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi></math>.\",\"PeriodicalId\":501296,\"journal\":{\"name\":\"PRX Quantum\",\"volume\":\"364 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.5.020368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.020368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子信号处理(QSP)和量子奇异值变换(QSVT)目前是实现分块编码矩阵函数的最有效技术,而分块编码矩阵函数是大多数著名量子算法的核心任务。然而,当前的 QSP 方法面临着一些挑战,例如对可实现多项式族的限制,以及计算特定变换所需的相位角的困难。在本文中,我们提出了一种广义量子信号处理(GQSP)方法,采用一般的 SU(2) 旋转作为信号处理算子,而不是仅仅依赖于单一基础上的旋转。我们的方法取消了对可实现变换系列的所有实际限制,唯一剩下的条件是 |P|≤1 ,这是量子计算的单元性质所必需的限制。此外,在已知 P 和 Q 的情况下,GQSP 提供了一个直接的递归公式,用于确定构建多项式所需的旋转角度。在只知道 P 的情况下,我们提供了一种高效的优化算法,能够在不到一分钟的 GPU 时间内,为阶数为 107 的多项式确定相应的 Q。我们进一步说明,GQSP 简化了基于 QSP 的汉密尔顿模拟策略,为ϵ-近似分数查询问题提供了最佳解决方案,该问题需要 O((1/δ)+log(1/ϵ)) 次查询来执行,其中 O(1/δ) 是一个已证明的下限,我们还介绍了实现玻色算子的新方法。此外,我们还提出了实现正矩阵的新框架,通过合成对角矩阵证明了其适用性,并通过合成圆周矩阵开发了一种新的卷积算法,对于长度为 d 的滤波器,只需使用 O(dlogN+log2N) 1 和 2 量子门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Generalized Quantum Signal Processing

Generalized Quantum Signal Processing
Quantum signal processing (QSP) and quantum singular value transformation (QSVT) currently stand as the most efficient techniques for implementing functions of block-encoded matrices, a central task that lies at the heart of most prominent quantum algorithms. However, current QSP approaches face several challenges, such as the restrictions imposed on the family of achievable polynomials and the difficulty of calculating the required phase angles for specific transformations. In this paper, we present a generalized quantum signal processing (GQSP) approach, employing general SU(2) rotations as our signal-processing operators, rather than relying solely on rotations in a single basis. Our approach lifts all practical restrictions on the family of achievable transformations, with the sole remaining condition being that |P|1, a restriction necessary due to the unitary nature of quantum computation. Furthermore, GQSP provides a straightforward recursive formula for determining the rotation angles needed to construct the polynomials in cases where P and Q are known. In cases where only P is known, we provide an efficient optimization algorithm capable of identifying in under a minute of GPU time, a corresponding Q for polynomials of degree on the order of 107. We further illustrate GQSP simplifies QSP-based strategies for Hamiltonian simulation, offer an optimal solution to the ϵ-approximate fractional query problem that requires O((1/δ)+log(1/ϵ)) queries to perform where O(1/δ) is a proved lower bound, and introduces novel approaches for implementing bosonic operators. Moreover, we propose a novel framework for the implementation of normal matrices, demonstrating its applicability through synthesis of diagonal matrices, as well as the development of a new algorithm for convolution through synthesis of circulant matrices using only O(dlogN+log2N) 1 and 2-qubit gates for a filter of lengths d.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信