{"title":"关于奇周期派生霍尔代数的说明","authors":"Haicheng Zhang, Xinran Zhang, Zhiwei Zhu","doi":"10.1142/s0219498825502822","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\"><mi>m</mi></math></span><span></span> be an odd positive integer and <span><math altimg=\"eq-00002.gif\" display=\"inline\"><msub><mrow><mi>D</mi></mrow><mrow><mi>m</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi mathvariant=\"cal\">𝒜</mi><mo stretchy=\"false\">)</mo></math></span><span></span> be the <span><math altimg=\"eq-00003.gif\" display=\"inline\"><mi>m</mi></math></span><span></span>-periodic derived category of a finitary hereditary Abelian category <span><math altimg=\"eq-00004.gif\" display=\"inline\"><mi mathvariant=\"cal\">𝒜</mi></math></span><span></span>. In this note, we prove that there is an embedding of algebras from the derived Hall algebra of <span><math altimg=\"eq-00005.gif\" display=\"inline\"><msub><mrow><mi>D</mi></mrow><mrow><mi>m</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi mathvariant=\"cal\">𝒜</mi><mo stretchy=\"false\">)</mo></math></span><span></span> defined by Xu–Chen [Hall algebras of odd periodic triangulated categories, <i>Algebr. Represent. Theory</i><b>16</b>(3) (2013) 673–687] to the extended derived Hall algebra of <span><math altimg=\"eq-00006.gif\" display=\"inline\"><msub><mrow><mi>D</mi></mrow><mrow><mi>m</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi mathvariant=\"cal\">𝒜</mi><mo stretchy=\"false\">)</mo></math></span><span></span> defined in [H. Zhang, Periodic derived Hall algebras of hereditary Abelian categories, preprint (2023), arXiv:2303.02912v2]. This homomorphism is given on basis elements, rather than just on generating elements.</p>","PeriodicalId":54888,"journal":{"name":"Journal of Algebra and Its Applications","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on odd periodic derived Hall algebras\",\"authors\":\"Haicheng Zhang, Xinran Zhang, Zhiwei Zhu\",\"doi\":\"10.1142/s0219498825502822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\"><mi>m</mi></math></span><span></span> be an odd positive integer and <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\"><msub><mrow><mi>D</mi></mrow><mrow><mi>m</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"cal\\\">𝒜</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> be the <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\"><mi>m</mi></math></span><span></span>-periodic derived category of a finitary hereditary Abelian category <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\"><mi mathvariant=\\\"cal\\\">𝒜</mi></math></span><span></span>. In this note, we prove that there is an embedding of algebras from the derived Hall algebra of <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\"><msub><mrow><mi>D</mi></mrow><mrow><mi>m</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"cal\\\">𝒜</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> defined by Xu–Chen [Hall algebras of odd periodic triangulated categories, <i>Algebr. Represent. Theory</i><b>16</b>(3) (2013) 673–687] to the extended derived Hall algebra of <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\"><msub><mrow><mi>D</mi></mrow><mrow><mi>m</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"cal\\\">𝒜</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> defined in [H. Zhang, Periodic derived Hall algebras of hereditary Abelian categories, preprint (2023), arXiv:2303.02912v2]. This homomorphism is given on basis elements, rather than just on generating elements.</p>\",\"PeriodicalId\":54888,\"journal\":{\"name\":\"Journal of Algebra and Its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219498825502822\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219498825502822","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 m 为奇数正整数,Dm(𝒜) 为有限遗传阿贝尔范畴 𝒜 的 m 周期派生范畴。在本注释中,我们将证明存在一个由许琛定义的 Dm(𝒜) 的派生霍尔代数的代数嵌入[Hall algebras of odd periodic triangulated categories, Algebr.Represent.Theory16(3) (2013) 673-687]中定义的 Dm(𝒜)的扩展导出霍尔代数[H. Zhang, Periodic derived Hall algege of Dm(𝒜) defined in [H.Zhang, Periodic derived Hall algebras of hereditary Abelian categories, preprint (2023), arXiv:2303.02912v2] 中定义的 Dm(𝒜) 的扩展导出霍尔代数。这个同态是在基元上给出的,而不仅仅是在生成元上。
Let be an odd positive integer and be the -periodic derived category of a finitary hereditary Abelian category . In this note, we prove that there is an embedding of algebras from the derived Hall algebra of defined by Xu–Chen [Hall algebras of odd periodic triangulated categories, Algebr. Represent. Theory16(3) (2013) 673–687] to the extended derived Hall algebra of defined in [H. Zhang, Periodic derived Hall algebras of hereditary Abelian categories, preprint (2023), arXiv:2303.02912v2]. This homomorphism is given on basis elements, rather than just on generating elements.
期刊介绍:
The Journal of Algebra and Its Applications will publish papers both on theoretical and on applied aspects of Algebra. There is special interest in papers that point out innovative links between areas of Algebra and fields of application. As the field of Algebra continues to experience tremendous growth and diversification, we intend to provide the mathematical community with a central source for information on both the theoretical and the applied aspects of the discipline. While the journal will be primarily devoted to the publication of original research, extraordinary expository articles that encourage communication between algebraists and experts on areas of application as well as those presenting the state of the art on a given algebraic sub-discipline will be considered.