ReBiT-Net:用于 RGB-D 突出物体检测的资源节约型双向传输网络

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Youpeng Yi, Jiawei Xu, Xiaoqin Zhang, Seop Hyeong Park
{"title":"ReBiT-Net:用于 RGB-D 突出物体检测的资源节约型双向传输网络","authors":"Youpeng Yi, Jiawei Xu, Xiaoqin Zhang, Seop Hyeong Park","doi":"10.1007/s42835-024-01971-z","DOIUrl":null,"url":null,"abstract":"<p>Existing artificial neural network-based methodologies for salient object detection in RGB-depth (RGB-D) images typically require significant memory and computation time. In this paper, we propose ReBiT-Net, an novel and resource-efficient network designed to addresses this issue. ReBiT-Net utilizes a mobile network for feature extraction and incorporates depth map quality to regulate the fusion of multi-modal features, resulting in top-to-bottom refinement of salient objects using salient information. Empirical evaluations conducted on five benchmark datasets demonstrate the superior performance of our model in terms of accuracy (achieving 334 frames per second for an input size of 320 <span>\\(\\times\\)</span> 320) and model parameters (merely 5.1 MB). Moreover, we introduce ReBiT-Net*, a simplified variant of ReBiT-Net, which entails reduced model parameters (4.2 MB) and enhanced processing speed (793 frames per second for a 256 <span>\\(\\times\\)</span> 256 input size). These improvements are achieved through reduced memory requirements and computational demands via the adoption of a smaller input image size.</p>","PeriodicalId":15577,"journal":{"name":"Journal of Electrical Engineering & Technology","volume":"17 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ReBiT-Net: Resource-Efficient Bidirectional Transmission Network for RGB-D Salient Object Detection\",\"authors\":\"Youpeng Yi, Jiawei Xu, Xiaoqin Zhang, Seop Hyeong Park\",\"doi\":\"10.1007/s42835-024-01971-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Existing artificial neural network-based methodologies for salient object detection in RGB-depth (RGB-D) images typically require significant memory and computation time. In this paper, we propose ReBiT-Net, an novel and resource-efficient network designed to addresses this issue. ReBiT-Net utilizes a mobile network for feature extraction and incorporates depth map quality to regulate the fusion of multi-modal features, resulting in top-to-bottom refinement of salient objects using salient information. Empirical evaluations conducted on five benchmark datasets demonstrate the superior performance of our model in terms of accuracy (achieving 334 frames per second for an input size of 320 <span>\\\\(\\\\times\\\\)</span> 320) and model parameters (merely 5.1 MB). Moreover, we introduce ReBiT-Net*, a simplified variant of ReBiT-Net, which entails reduced model parameters (4.2 MB) and enhanced processing speed (793 frames per second for a 256 <span>\\\\(\\\\times\\\\)</span> 256 input size). These improvements are achieved through reduced memory requirements and computational demands via the adoption of a smaller input image size.</p>\",\"PeriodicalId\":15577,\"journal\":{\"name\":\"Journal of Electrical Engineering & Technology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42835-024-01971-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42835-024-01971-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

现有的基于人工神经网络的 RGB 深度(RGB-D)图像中突出物体检测方法通常需要大量内存和计算时间。在本文中,我们提出了 ReBiT-Net,这是一种新颖且节省资源的网络,旨在解决这一问题。ReBiT-Net 利用移动网络进行特征提取,并结合深度图质量来调节多模态特征的融合,从而利用突出信息对突出对象进行从上到下的细化。在五个基准数据集上进行的实证评估表明,我们的模型在准确性(输入大小为 320 \(\times\) 320 时达到每秒 334 帧)和模型参数(仅为 5.1 MB)方面表现出色。此外,我们还引入了 ReBiT-Net* 这个 ReBiT-Net 的简化变体,它减少了模型参数(4.2 MB),提高了处理速度(256 (次) 256 输入大小每秒可处理 793 帧)。这些改进是通过采用较小的输入图像尺寸来减少内存需求和计算需求实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

ReBiT-Net: Resource-Efficient Bidirectional Transmission Network for RGB-D Salient Object Detection

ReBiT-Net: Resource-Efficient Bidirectional Transmission Network for RGB-D Salient Object Detection

Existing artificial neural network-based methodologies for salient object detection in RGB-depth (RGB-D) images typically require significant memory and computation time. In this paper, we propose ReBiT-Net, an novel and resource-efficient network designed to addresses this issue. ReBiT-Net utilizes a mobile network for feature extraction and incorporates depth map quality to regulate the fusion of multi-modal features, resulting in top-to-bottom refinement of salient objects using salient information. Empirical evaluations conducted on five benchmark datasets demonstrate the superior performance of our model in terms of accuracy (achieving 334 frames per second for an input size of 320 \(\times\) 320) and model parameters (merely 5.1 MB). Moreover, we introduce ReBiT-Net*, a simplified variant of ReBiT-Net, which entails reduced model parameters (4.2 MB) and enhanced processing speed (793 frames per second for a 256 \(\times\) 256 input size). These improvements are achieved through reduced memory requirements and computational demands via the adoption of a smaller input image size.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electrical Engineering & Technology
Journal of Electrical Engineering & Technology ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
4.00
自引率
15.80%
发文量
321
审稿时长
3.8 months
期刊介绍: ournal of Electrical Engineering and Technology (JEET), which is the official publication of the Korean Institute of Electrical Engineers (KIEE) being published bimonthly, released the first issue in March 2006.The journal is open to submission from scholars and experts in the wide areas of electrical engineering technologies. The scope of the journal includes all issues in the field of Electrical Engineering and Technology. Included are techniques for electrical power engineering, electrical machinery and energy conversion systems, electrophysics and applications, information and controls.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信