克劳斯矩阵的惯性 II

Takashi Sano
{"title":"克劳斯矩阵的惯性 II","authors":"Takashi Sano","doi":"10.1007/s13226-024-00647-8","DOIUrl":null,"url":null,"abstract":"<p>For positive real numbers <span>\\(r, p_0,\\)</span> and <span>\\(p_1&lt; \\cdots &lt; p_n,\\)</span> let <span>\\(K_r\\)</span> be the Kraus matrix whose (<i>i</i>, <i>j</i>) entry is equal to </p><span>$$\\begin{aligned} \\frac{1}{p_i - p_j} \\Bigl ( \\frac{p_i^r - p_0^r}{p_i -p_0} - \\frac{p_j^r - p_0^r}{p_j -p_0} \\Bigr ). \\end{aligned}$$</span><p>In this article, we give a supplemental result to Sano and Takeuchi (J. Spectr. Theory, 2022) about the Kraus matrices <span>\\(K_r\\)</span>: the simplicity of non-zero eigenvalues. Our proof is accomplished by arguments similar to those for Loewner matrices given by Bhatia, Friedland and Jain (Indiana Univ. Math. J., 2016).</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inertia of Kraus matrices II\",\"authors\":\"Takashi Sano\",\"doi\":\"10.1007/s13226-024-00647-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For positive real numbers <span>\\\\(r, p_0,\\\\)</span> and <span>\\\\(p_1&lt; \\\\cdots &lt; p_n,\\\\)</span> let <span>\\\\(K_r\\\\)</span> be the Kraus matrix whose (<i>i</i>, <i>j</i>) entry is equal to </p><span>$$\\\\begin{aligned} \\\\frac{1}{p_i - p_j} \\\\Bigl ( \\\\frac{p_i^r - p_0^r}{p_i -p_0} - \\\\frac{p_j^r - p_0^r}{p_j -p_0} \\\\Bigr ). \\\\end{aligned}$$</span><p>In this article, we give a supplemental result to Sano and Takeuchi (J. Spectr. Theory, 2022) about the Kraus matrices <span>\\\\(K_r\\\\)</span>: the simplicity of non-zero eigenvalues. Our proof is accomplished by arguments similar to those for Loewner matrices given by Bhatia, Friedland and Jain (Indiana Univ. Math. J., 2016).</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00647-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00647-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于正实数 \(r,p_0,\)和 \(p_1<\cdots<p_n,\),让 \(K_r\)成为克劳斯矩阵,其(i, j)条目等于$$\begin{aligned}。\frac{1}{p_i - p_j}\Bigl ( \frac{p_i^r - p_0^r}{p_i -p_0} - \frac{p_j^r - p_0^r}{p_j -p_0} \Bigr ).\end{aligned}$$ 在本文中,我们给出了佐野和竹内(Sano and Takeuchi)(J. Spectr. Theory, 2022)关于克劳斯矩阵 \(K_r\)的一个补充结果:非零特征值的简单性。我们的证明是通过类似于巴蒂亚、弗里德兰和詹恩(Indiana Univ. Math. J., 2016)给出的关于洛厄纳矩阵的论证完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inertia of Kraus matrices II

For positive real numbers \(r, p_0,\) and \(p_1< \cdots < p_n,\) let \(K_r\) be the Kraus matrix whose (ij) entry is equal to

$$\begin{aligned} \frac{1}{p_i - p_j} \Bigl ( \frac{p_i^r - p_0^r}{p_i -p_0} - \frac{p_j^r - p_0^r}{p_j -p_0} \Bigr ). \end{aligned}$$

In this article, we give a supplemental result to Sano and Takeuchi (J. Spectr. Theory, 2022) about the Kraus matrices \(K_r\): the simplicity of non-zero eigenvalues. Our proof is accomplished by arguments similar to those for Loewner matrices given by Bhatia, Friedland and Jain (Indiana Univ. Math. J., 2016).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信