连续谱中的积分态密度的规律性

M. Krishna
{"title":"连续谱中的积分态密度的规律性","authors":"M. Krishna","doi":"10.1007/s13226-024-00640-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper we show that spectral measures of the Laplacian on <span>\\(\\ell ^2({\\mathbb {Z}}^d)\\)</span> are smooth in some regions of its spectrum, a result that extends to parts of the absolutely continuous spectrum of some random perturbations of it. The spectral measures considered are associated with dense sets of vectors.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity of the integrated density of states in the continuous spectrum\",\"authors\":\"M. Krishna\",\"doi\":\"10.1007/s13226-024-00640-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we show that spectral measures of the Laplacian on <span>\\\\(\\\\ell ^2({\\\\mathbb {Z}}^d)\\\\)</span> are smooth in some regions of its spectrum, a result that extends to parts of the absolutely continuous spectrum of some random perturbations of it. The spectral measures considered are associated with dense sets of vectors.</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00640-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00640-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了拉普拉斯(\ell ^2({\mathbb {Z}}^d)\)上的频谱度量在其频谱的某些区域是平滑的,这一结果扩展到了它的某些随机扰动的绝对连续谱的部分区域。所考虑的频谱度量与密集的向量集相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity of the integrated density of states in the continuous spectrum

In this paper we show that spectral measures of the Laplacian on \(\ell ^2({\mathbb {Z}}^d)\) are smooth in some regions of its spectrum, a result that extends to parts of the absolutely continuous spectrum of some random perturbations of it. The spectral measures considered are associated with dense sets of vectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信