具有可变指数和 $$L^1$$ 数据的非线性加权椭圆问题

Rabah Mecheter
{"title":"具有可变指数和 $$L^1$$ 数据的非线性加权椭圆问题","authors":"Rabah Mecheter","doi":"10.1007/s13226-024-00627-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove the existence of weak solutions for a class of nonlinear weighted elliptic equations in <span>\\(\\Omega \\)</span> with <i>p</i>(<i>x</i>) growth conditions and integrable data. The functional setting involves Lebesgue-Sobolev spaces with variable exponents. Our results are generalizations of the corresponding results in the constant exponent case in L. Boccardo et al (Boll. Unione Mat. Ital. 15, No. 4, 503-514 (2022)) and some results given in D. Arcoya et al ( Journal of Functional Analysis, 268(5), 1153-1166 (2015)).</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear weighted elliptic problem with variable exponents and $$L^1$$ data\",\"authors\":\"Rabah Mecheter\",\"doi\":\"10.1007/s13226-024-00627-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we prove the existence of weak solutions for a class of nonlinear weighted elliptic equations in <span>\\\\(\\\\Omega \\\\)</span> with <i>p</i>(<i>x</i>) growth conditions and integrable data. The functional setting involves Lebesgue-Sobolev spaces with variable exponents. Our results are generalizations of the corresponding results in the constant exponent case in L. Boccardo et al (Boll. Unione Mat. Ital. 15, No. 4, 503-514 (2022)) and some results given in D. Arcoya et al ( Journal of Functional Analysis, 268(5), 1153-1166 (2015)).</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00627-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00627-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了一类具有 p(x) 增长条件和可积分数据的 \(\Omega \) 非线性加权椭圆方程的弱解存在性。函数设置涉及具有可变指数的 Lebesgue-Sobolev 空间。我们的结果是 L. Boccardo et al (Boll. Unione Mat.Unione Mat.Ital.15, No. 4, 503-514 (2022)) 和 D. Arcoya et al ( Journal of Functional Analysis, 268(5), 1153-1166 (2015)) 中给出的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nonlinear weighted elliptic problem with variable exponents and $$L^1$$ data

Nonlinear weighted elliptic problem with variable exponents and $$L^1$$ data

In this paper, we prove the existence of weak solutions for a class of nonlinear weighted elliptic equations in \(\Omega \) with p(x) growth conditions and integrable data. The functional setting involves Lebesgue-Sobolev spaces with variable exponents. Our results are generalizations of the corresponding results in the constant exponent case in L. Boccardo et al (Boll. Unione Mat. Ital. 15, No. 4, 503-514 (2022)) and some results given in D. Arcoya et al ( Journal of Functional Analysis, 268(5), 1153-1166 (2015)).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信