作为学习率调度器的循环对数退火法

Philip Naveen
{"title":"作为学习率调度器的循环对数退火法","authors":"Philip Naveen","doi":"arxiv-2403.14685","DOIUrl":null,"url":null,"abstract":"A learning rate scheduler is a predefined set of instructions for varying\nsearch stepsizes during model training processes. This paper introduces a new\nlogarithmic method using harsh restarting of step sizes through stochastic\ngradient descent. Cyclical log annealing implements the restart pattern more\naggressively to maybe allow the usage of more greedy algorithms on the online\nconvex optimization framework. The algorithm was tested on the CIFAR-10 image\ndatasets, and seemed to perform analogously with cosine annealing on large\ntransformer-enhanced residual neural networks. Future experiments would involve\ntesting the scheduler in generative adversarial networks and finding the best\nparameters for the scheduler with more experiments.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclical Log Annealing as a Learning Rate Scheduler\",\"authors\":\"Philip Naveen\",\"doi\":\"arxiv-2403.14685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A learning rate scheduler is a predefined set of instructions for varying\\nsearch stepsizes during model training processes. This paper introduces a new\\nlogarithmic method using harsh restarting of step sizes through stochastic\\ngradient descent. Cyclical log annealing implements the restart pattern more\\naggressively to maybe allow the usage of more greedy algorithms on the online\\nconvex optimization framework. The algorithm was tested on the CIFAR-10 image\\ndatasets, and seemed to perform analogously with cosine annealing on large\\ntransformer-enhanced residual neural networks. Future experiments would involve\\ntesting the scheduler in generative adversarial networks and finding the best\\nparameters for the scheduler with more experiments.\",\"PeriodicalId\":501256,\"journal\":{\"name\":\"arXiv - CS - Mathematical Software\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Mathematical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.14685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.14685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

学习率调度器是一套预定义的指令,用于在模型训练过程中改变搜索步长。本文介绍了一种新的对数方法,该方法通过随机梯度下降对步长进行苛刻的重启。循环对数退火法以更激进的方式实现了重启模式,从而可以在在线凸优化框架中使用更贪婪的算法。该算法在 CIFAR-10 图像集上进行了测试,在大型变压器增强残差神经网络上的表现似乎与余弦退火类似。未来的实验将包括在生成对抗网络中测试调度器,并通过更多实验找到调度器的最佳参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyclical Log Annealing as a Learning Rate Scheduler
A learning rate scheduler is a predefined set of instructions for varying search stepsizes during model training processes. This paper introduces a new logarithmic method using harsh restarting of step sizes through stochastic gradient descent. Cyclical log annealing implements the restart pattern more aggressively to maybe allow the usage of more greedy algorithms on the online convex optimization framework. The algorithm was tested on the CIFAR-10 image datasets, and seemed to perform analogously with cosine annealing on large transformer-enhanced residual neural networks. Future experiments would involve testing the scheduler in generative adversarial networks and finding the best parameters for the scheduler with more experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信