混沌游戏与匀速转动:从西尔平斯基垫圈到周期轨道

Abdulrahman Abdulaziz
{"title":"混沌游戏与匀速转动:从西尔平斯基垫圈到周期轨道","authors":"Abdulrahman Abdulaziz","doi":"arxiv-2407.02506","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a couple of dynamical systems that are related to\nthe Chaos Game. We begin by discussing different methods of generating the\nSierpinski gasket. Then we show how the transition from random to uniform\nselection reduces the Sierpinski gasket to simple periodic orbits. Next, we\nprovide a simple formula for the attractor of each of the introduced dynamical\nsystems based only on the contraction ratio and the regular n-gon on which the\ngame is played. Finally, we show how the basins of attraction of a particular\ndynamical system can generate some novel motifs that can tile the plane.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Chaos Game Versus Uniform Rotation: From Sierpinski Gaskets to Periodic Orbits\",\"authors\":\"Abdulrahman Abdulaziz\",\"doi\":\"arxiv-2407.02506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a couple of dynamical systems that are related to\\nthe Chaos Game. We begin by discussing different methods of generating the\\nSierpinski gasket. Then we show how the transition from random to uniform\\nselection reduces the Sierpinski gasket to simple periodic orbits. Next, we\\nprovide a simple formula for the attractor of each of the introduced dynamical\\nsystems based only on the contraction ratio and the regular n-gon on which the\\ngame is played. Finally, we show how the basins of attraction of a particular\\ndynamical system can generate some novel motifs that can tile the plane.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.02506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.02506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将介绍几个与混沌博弈相关的动力系统。我们首先讨论了生成西尔平斯基垫圈的不同方法。然后,我们展示了从随机选择到均匀选择的过渡如何将西尔平斯基垫圈还原为简单的周期轨道。接下来,我们仅根据收缩比和游戏所处的正则 n 冈,就为每个引入的动力学系统的吸引子提供了一个简单的公式。最后,我们展示了特定动力学系统的吸引盆地如何产生一些可以铺满平面的新颖图案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Chaos Game Versus Uniform Rotation: From Sierpinski Gaskets to Periodic Orbits
In this paper, we introduce a couple of dynamical systems that are related to the Chaos Game. We begin by discussing different methods of generating the Sierpinski gasket. Then we show how the transition from random to uniform selection reduces the Sierpinski gasket to simple periodic orbits. Next, we provide a simple formula for the attractor of each of the introduced dynamical systems based only on the contraction ratio and the regular n-gon on which the game is played. Finally, we show how the basins of attraction of a particular dynamical system can generate some novel motifs that can tile the plane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信