良性过拟合和自适应非参数回归

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Julien Chhor, Suzanne Sigalla, Alexandre B. Tsybakov
{"title":"良性过拟合和自适应非参数回归","authors":"Julien Chhor, Suzanne Sigalla, Alexandre B. Tsybakov","doi":"10.1007/s00440-024-01278-0","DOIUrl":null,"url":null,"abstract":"<p>We study benign overfitting in the setting of nonparametric regression under mean squared risk, and on the scale of Hölder classes. We construct a local polynomial estimator of the regression function that is minimax optimal on a Hölder class with any given smoothness, and that is a continuous function interpolating the set of observations with high probability. The key element of the construction is the use of singular kernels. Moreover, we prove that adaptation to unknown smoothness is compatible with benign overfitting. Namely, we construct a continuous and interpolating local polynomial estimator attaining the minimax optimal rate in <span>\\(L_2\\)</span> adaptively to the unknown Hölder smoothness. Our results highlight the fact that interpolation can be fundamentally decoupled from bias-variance tradeoff in the problem of nonparametric regression.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benign overfitting and adaptive nonparametric regression\",\"authors\":\"Julien Chhor, Suzanne Sigalla, Alexandre B. Tsybakov\",\"doi\":\"10.1007/s00440-024-01278-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study benign overfitting in the setting of nonparametric regression under mean squared risk, and on the scale of Hölder classes. We construct a local polynomial estimator of the regression function that is minimax optimal on a Hölder class with any given smoothness, and that is a continuous function interpolating the set of observations with high probability. The key element of the construction is the use of singular kernels. Moreover, we prove that adaptation to unknown smoothness is compatible with benign overfitting. Namely, we construct a continuous and interpolating local polynomial estimator attaining the minimax optimal rate in <span>\\\\(L_2\\\\)</span> adaptively to the unknown Hölder smoothness. Our results highlight the fact that interpolation can be fundamentally decoupled from bias-variance tradeoff in the problem of nonparametric regression.</p>\",\"PeriodicalId\":20527,\"journal\":{\"name\":\"Probability Theory and Related Fields\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Theory and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00440-024-01278-0\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01278-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了均方风险下非参数回归的良性过拟合,以及霍尔德类的规模。我们构建了一个回归函数的局部多项式估计器,该估计器在任意给定平滑度的赫尔德类上都是最小最优的,并且是一个连续函数,可以高概率地对观测数据集进行插值。构造的关键因素是奇异核的使用。此外,我们还证明了对未知平滑度的适应与良性过拟合是兼容的。也就是说,我们构建了一个连续的、内插的局部多项式估计器,该估计器在\(L_2\)中达到了最小最优率,并能自适应地适应未知的霍尔德平滑度。我们的结果凸显了一个事实,即在非参数回归问题中,插值可以从根本上与偏差-方差权衡脱钩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Benign overfitting and adaptive nonparametric regression

Benign overfitting and adaptive nonparametric regression

We study benign overfitting in the setting of nonparametric regression under mean squared risk, and on the scale of Hölder classes. We construct a local polynomial estimator of the regression function that is minimax optimal on a Hölder class with any given smoothness, and that is a continuous function interpolating the set of observations with high probability. The key element of the construction is the use of singular kernels. Moreover, we prove that adaptation to unknown smoothness is compatible with benign overfitting. Namely, we construct a continuous and interpolating local polynomial estimator attaining the minimax optimal rate in \(L_2\) adaptively to the unknown Hölder smoothness. Our results highlight the fact that interpolation can be fundamentally decoupled from bias-variance tradeoff in the problem of nonparametric regression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信