机器学习 Calabi-Yau 度量和曲率

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Per Berglund, Giorgi Butbaia, Tristan Hüubsch, Vishnu Jejjala, Damián Mayorga Peña, Challenger Mishra, Justin Tan
{"title":"机器学习 Calabi-Yau 度量和曲率","authors":"Per Berglund, Giorgi Butbaia, Tristan Hüubsch, Vishnu Jejjala, Damián Mayorga Peña, Challenger Mishra, Justin Tan","doi":"10.4310/atmp.2023.v27.n4.a3","DOIUrl":null,"url":null,"abstract":"$\\def\\SingX{\\mathrm{Sing}X}$Finding Ricci-flat (Calabi–Yau) metrics is a long standing problem in geometry with deep implications for string theory and phenomenology. A new attack on this problem uses neural networks to engineer approximations to the Calabi–Yau metric within a given Kähler class. In this paper we investigate numerical Ricci-flat metrics over smooth and singular K3 surfaces and Calabi–Yau threefolds. Using these Ricci-flat metric approximations for the Cefalú family of quartic twofolds and the Dwork family of quintic threefolds, we study characteristic forms on these geometries. We observe that the numerical stability of the numerically computed topological characteristic is heavily influenced by the choice of the neural network model, in particular, we briefly discuss a different neural network model, namely spectral networks, which correctly approximate the topological characteristic of a Calabi–Yau. Using persistent homology, we show that high curvature regions of the manifolds form clusters near the singular points. For our neural network approximations, we observe a Bogomolov–Yau type inequality $3c_2 \\geq c^2_1$ and observe an identity when our geometries have isolated $A_1$ type singularities. We sketch a proof that $\\chi (X \\setminus \\SingX) + 2 {\\lvert \\SingX \\rvert} = 24$ also holds for our numerical approximations.","PeriodicalId":50848,"journal":{"name":"Advances in Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine-learned Calabi–Yau metrics and curvature\",\"authors\":\"Per Berglund, Giorgi Butbaia, Tristan Hüubsch, Vishnu Jejjala, Damián Mayorga Peña, Challenger Mishra, Justin Tan\",\"doi\":\"10.4310/atmp.2023.v27.n4.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"$\\\\def\\\\SingX{\\\\mathrm{Sing}X}$Finding Ricci-flat (Calabi–Yau) metrics is a long standing problem in geometry with deep implications for string theory and phenomenology. A new attack on this problem uses neural networks to engineer approximations to the Calabi–Yau metric within a given Kähler class. In this paper we investigate numerical Ricci-flat metrics over smooth and singular K3 surfaces and Calabi–Yau threefolds. Using these Ricci-flat metric approximations for the Cefalú family of quartic twofolds and the Dwork family of quintic threefolds, we study characteristic forms on these geometries. We observe that the numerical stability of the numerically computed topological characteristic is heavily influenced by the choice of the neural network model, in particular, we briefly discuss a different neural network model, namely spectral networks, which correctly approximate the topological characteristic of a Calabi–Yau. Using persistent homology, we show that high curvature regions of the manifolds form clusters near the singular points. For our neural network approximations, we observe a Bogomolov–Yau type inequality $3c_2 \\\\geq c^2_1$ and observe an identity when our geometries have isolated $A_1$ type singularities. We sketch a proof that $\\\\chi (X \\\\setminus \\\\SingX) + 2 {\\\\lvert \\\\SingX \\\\rvert} = 24$ also holds for our numerical approximations.\",\"PeriodicalId\":50848,\"journal\":{\"name\":\"Advances in Theoretical and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.4310/atmp.2023.v27.n4.a3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4310/atmp.2023.v27.n4.a3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

$def\SingX{mathrm{Sing}X}$寻找里奇平坦(Calabi-Yau)度量是几何学中一个长期存在的问题,对弦论和现象学有着深刻的影响。对这一问题的新研究利用神经网络在给定的 Kähler 类中设计 Calabi-Yau 度量的近似值。在本文中,我们研究了光滑和奇异 K3 表面以及 Calabi-Yau 三折上的数值 Ricci-flat 度量。利用这些里奇平面度量近似值,我们研究了四元二次方程的 Cefalú 族和五元三次方程的 Dwork 族的几何特征形式。我们观察到,数值计算拓扑特征的数值稳定性在很大程度上受神经网络模型选择的影响,特别是,我们简要讨论了一种不同的神经网络模型,即谱网络,它能正确逼近 Calabi-Yau 的拓扑特征。利用持久同源性,我们证明了流形的高曲率区域在奇异点附近形成了簇。对于我们的神经网络近似,我们观察到博戈莫洛夫-尤类型不等式 $3c_2 \geq c^2_1$,并观察到当我们的几何具有孤立的 $A_1$ 类型奇点时的同一性。我们简要证明了 $\chi (X \setminus \SingX) + 2 {\lvert \SingX \rvert} = 24$ 对于我们的数值近似也是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine-learned Calabi–Yau metrics and curvature
$\def\SingX{\mathrm{Sing}X}$Finding Ricci-flat (Calabi–Yau) metrics is a long standing problem in geometry with deep implications for string theory and phenomenology. A new attack on this problem uses neural networks to engineer approximations to the Calabi–Yau metric within a given Kähler class. In this paper we investigate numerical Ricci-flat metrics over smooth and singular K3 surfaces and Calabi–Yau threefolds. Using these Ricci-flat metric approximations for the Cefalú family of quartic twofolds and the Dwork family of quintic threefolds, we study characteristic forms on these geometries. We observe that the numerical stability of the numerically computed topological characteristic is heavily influenced by the choice of the neural network model, in particular, we briefly discuss a different neural network model, namely spectral networks, which correctly approximate the topological characteristic of a Calabi–Yau. Using persistent homology, we show that high curvature regions of the manifolds form clusters near the singular points. For our neural network approximations, we observe a Bogomolov–Yau type inequality $3c_2 \geq c^2_1$ and observe an identity when our geometries have isolated $A_1$ type singularities. We sketch a proof that $\chi (X \setminus \SingX) + 2 {\lvert \SingX \rvert} = 24$ also holds for our numerical approximations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Theoretical and Mathematical Physics
Advances in Theoretical and Mathematical Physics 物理-物理:粒子与场物理
CiteScore
2.20
自引率
6.70%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Theoretical and Mathematical Physics is a bimonthly publication of the International Press, publishing papers on all areas in which theoretical physics and mathematics interact with each other.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信