{"title":"求解相干线性系统的惯性随机卡兹马兹算法","authors":"Songnian He, Ziting Wang, Qiao-Li Dong","doi":"10.1007/s11075-024-01872-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, by regarding the two-subspace Kaczmarz method as an alternated inertial randomized Kaczmarz algorithm we present a better convergence rate estimate under a mild condition. Furthermore, we accelerate the alternated inertial randomized Kaczmarz algorithm and introduce a multi-step inertial randomized Kaczmarz algorithm which is proved to have a faster convergence rate. Numerical experiments support the theory results and illustrate that the multi-inertial randomized Kaczmarz algorithm significantly outperform the two-subspace Kaczmarz method in solving coherent linear systems.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"198 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inertial randomized Kaczmarz algorithms for solving coherent linear systems\",\"authors\":\"Songnian He, Ziting Wang, Qiao-Li Dong\",\"doi\":\"10.1007/s11075-024-01872-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, by regarding the two-subspace Kaczmarz method as an alternated inertial randomized Kaczmarz algorithm we present a better convergence rate estimate under a mild condition. Furthermore, we accelerate the alternated inertial randomized Kaczmarz algorithm and introduce a multi-step inertial randomized Kaczmarz algorithm which is proved to have a faster convergence rate. Numerical experiments support the theory results and illustrate that the multi-inertial randomized Kaczmarz algorithm significantly outperform the two-subspace Kaczmarz method in solving coherent linear systems.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"198 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01872-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01872-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Inertial randomized Kaczmarz algorithms for solving coherent linear systems
In this paper, by regarding the two-subspace Kaczmarz method as an alternated inertial randomized Kaczmarz algorithm we present a better convergence rate estimate under a mild condition. Furthermore, we accelerate the alternated inertial randomized Kaczmarz algorithm and introduce a multi-step inertial randomized Kaczmarz algorithm which is proved to have a faster convergence rate. Numerical experiments support the theory results and illustrate that the multi-inertial randomized Kaczmarz algorithm significantly outperform the two-subspace Kaczmarz method in solving coherent linear systems.
期刊介绍:
The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.