时间分数扩散方程高阶精确方案所产生的线性系统的高效预处理器

IF 2.4 3区 数学 Q1 MATHEMATICS
Di Gan, Guo-Feng Zhang, Zhao-Zheng Liang
{"title":"时间分数扩散方程高阶精确方案所产生的线性系统的高效预处理器","authors":"Di Gan, Guo-Feng Zhang, Zhao-Zheng Liang","doi":"10.1007/s12190-024-02167-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study preconditioners for all-at-once systems arising from the discretization of time-fractional sub-diffusion equations. Due to the use of high-order accurate formulas in time fractional derivative, the coefficient matrix does not have a Toeplitz structure. We reconstructed the coefficient matrix so that the all-at-once system has a non-symmetric Toeplitz-like structure. Based on the non-symmetric Toplitz-like structure of the new system, we designed a preconditioner that can be quickly diagonalized by discrete sine transform and fast Fourier transform techniques. we show that the spectrum of the preconditioned matrix are clustered around 1. Also, we verified the effectiveness of the proposed preconditioner by numerical experiments.</p>","PeriodicalId":15034,"journal":{"name":"Journal of Applied Mathematics and Computing","volume":"34 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient preconditioner for linear systems arising from high-order accurate schemes of time fractional diffusion equations\",\"authors\":\"Di Gan, Guo-Feng Zhang, Zhao-Zheng Liang\",\"doi\":\"10.1007/s12190-024-02167-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study preconditioners for all-at-once systems arising from the discretization of time-fractional sub-diffusion equations. Due to the use of high-order accurate formulas in time fractional derivative, the coefficient matrix does not have a Toeplitz structure. We reconstructed the coefficient matrix so that the all-at-once system has a non-symmetric Toeplitz-like structure. Based on the non-symmetric Toplitz-like structure of the new system, we designed a preconditioner that can be quickly diagonalized by discrete sine transform and fast Fourier transform techniques. we show that the spectrum of the preconditioned matrix are clustered around 1. Also, we verified the effectiveness of the proposed preconditioner by numerical experiments.</p>\",\"PeriodicalId\":15034,\"journal\":{\"name\":\"Journal of Applied Mathematics and Computing\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12190-024-02167-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02167-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了由时间分数子扩散方程离散化产生的全一次系统的预处理。由于在时间分数导数中使用了高阶精确公式,系数矩阵不具有 Toeplitz 结构。我们对系数矩阵进行了重构,从而使全一次系统具有非对称托普利兹结构。基于新系统的非对称托普利兹结构,我们设计了一种预处理器,它可以通过离散正弦变换和快速傅里叶变换技术快速对角。我们的研究表明,预处理矩阵的频谱集中在 1 附近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An efficient preconditioner for linear systems arising from high-order accurate schemes of time fractional diffusion equations

An efficient preconditioner for linear systems arising from high-order accurate schemes of time fractional diffusion equations

In this paper, we study preconditioners for all-at-once systems arising from the discretization of time-fractional sub-diffusion equations. Due to the use of high-order accurate formulas in time fractional derivative, the coefficient matrix does not have a Toeplitz structure. We reconstructed the coefficient matrix so that the all-at-once system has a non-symmetric Toeplitz-like structure. Based on the non-symmetric Toplitz-like structure of the new system, we designed a preconditioner that can be quickly diagonalized by discrete sine transform and fast Fourier transform techniques. we show that the spectrum of the preconditioned matrix are clustered around 1. Also, we verified the effectiveness of the proposed preconditioner by numerical experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Mathematics and Computing
Journal of Applied Mathematics and Computing Mathematics-Computational Mathematics
CiteScore
4.20
自引率
4.50%
发文量
131
期刊介绍: JAMC is a broad based journal covering all branches of computational or applied mathematics with special encouragement to researchers in theoretical computer science and mathematical computing. Major areas, such as numerical analysis, discrete optimization, linear and nonlinear programming, theory of computation, control theory, theory of algorithms, computational logic, applied combinatorics, coding theory, cryptograhics, fuzzy theory with applications, differential equations with applications are all included. A large variety of scientific problems also necessarily involve Algebra, Analysis, Geometry, Probability and Statistics and so on. The journal welcomes research papers in all branches of mathematics which have some bearing on the application to scientific problems, including papers in the areas of Actuarial Science, Mathematical Biology, Mathematical Economics and Finance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信