{"title":"数值范围和达芬过阻尼准则的广义化","authors":"R. Hildebrand","doi":"10.1134/s0965542524700015","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The joint numerical range of tuples of matrices is a powerful tool for proving results which are useful in optimization, such as the <span>\\(\\mathcal{S}\\)</span>-lemma. Here we provide a similar proof for another result, namely the equivalence of a certain positivity criterion to Duffin’s overdamping condition involving quadratic matrix-valued polynomials. We show how the proof is generalizable to higher degrees of matrix-valued polynomials.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Range and a Generalization of Duffin’s Overdamping Criterion\",\"authors\":\"R. Hildebrand\",\"doi\":\"10.1134/s0965542524700015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The joint numerical range of tuples of matrices is a powerful tool for proving results which are useful in optimization, such as the <span>\\\\(\\\\mathcal{S}\\\\)</span>-lemma. Here we provide a similar proof for another result, namely the equivalence of a certain positivity criterion to Duffin’s overdamping condition involving quadratic matrix-valued polynomials. We show how the proof is generalizable to higher degrees of matrix-valued polynomials.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524700015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Range and a Generalization of Duffin’s Overdamping Criterion
Abstract
The joint numerical range of tuples of matrices is a powerful tool for proving results which are useful in optimization, such as the \(\mathcal{S}\)-lemma. Here we provide a similar proof for another result, namely the equivalence of a certain positivity criterion to Duffin’s overdamping condition involving quadratic matrix-valued polynomials. We show how the proof is generalizable to higher degrees of matrix-valued polynomials.