数值范围和达芬过阻尼准则的广义化

Pub Date : 2024-06-07 DOI:10.1134/s0965542524700015
R. Hildebrand
{"title":"数值范围和达芬过阻尼准则的广义化","authors":"R. Hildebrand","doi":"10.1134/s0965542524700015","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The joint numerical range of tuples of matrices is a powerful tool for proving results which are useful in optimization, such as the <span>\\(\\mathcal{S}\\)</span>-lemma. Here we provide a similar proof for another result, namely the equivalence of a certain positivity criterion to Duffin’s overdamping condition involving quadratic matrix-valued polynomials. We show how the proof is generalizable to higher degrees of matrix-valued polynomials.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Range and a Generalization of Duffin’s Overdamping Criterion\",\"authors\":\"R. Hildebrand\",\"doi\":\"10.1134/s0965542524700015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The joint numerical range of tuples of matrices is a powerful tool for proving results which are useful in optimization, such as the <span>\\\\(\\\\mathcal{S}\\\\)</span>-lemma. Here we provide a similar proof for another result, namely the equivalence of a certain positivity criterion to Duffin’s overdamping condition involving quadratic matrix-valued polynomials. We show how the proof is generalizable to higher degrees of matrix-valued polynomials.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524700015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要矩阵元组的联合数值范围是证明优化中有用结果的有力工具,例如 \(\mathcal{S}\)-lemma 。在这里,我们为另一个结果提供了类似的证明,即涉及二次矩阵值多项式的某个正定准则与达芬过阻尼条件的等价性。我们展示了如何将证明推广到更高程度的矩阵值多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Numerical Range and a Generalization of Duffin’s Overdamping Criterion

分享
查看原文
Numerical Range and a Generalization of Duffin’s Overdamping Criterion

Abstract

The joint numerical range of tuples of matrices is a powerful tool for proving results which are useful in optimization, such as the \(\mathcal{S}\)-lemma. Here we provide a similar proof for another result, namely the equivalence of a certain positivity criterion to Duffin’s overdamping condition involving quadratic matrix-valued polynomials. We show how the proof is generalizable to higher degrees of matrix-valued polynomials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信