关于 C 正态算子矩阵

IF 1.1 3区 数学 Q1 MATHEMATICS
Eungil Ko, Ji Eun Lee, Mee-Jung Lee
{"title":"关于 C 正态算子矩阵","authors":"Eungil Ko, Ji Eun Lee, Mee-Jung Lee","doi":"10.1007/s00025-024-02220-5","DOIUrl":null,"url":null,"abstract":"<p>An operator <span>\\(T\\in {\\mathcal {L(H)}}\\)</span> is said to be <i>C-normal</i> if there exists a conjugation <i>C</i> on <span>\\({{\\mathcal {H}}}\\)</span> such that the commutator <span>\\([(CT)^{\\#}, CT]\\)</span> equals zero, where <span>\\([R,S]:=RS-SR\\)</span> and <span>\\(R^{\\#}\\)</span> is a Hermitian adjont operator of <i>R</i> as in (1). If there exists a conjugation <i>C</i> with respect to which <span>\\(T\\in \\mathcal {L(H)}\\)</span> is <i>C</i>-normal, then <i>T</i> is called a <i>conjugation-normal</i> operator. In this paper, we study properties of conjugation-normal operator matrices. In particular, we focus on the conjugation-normality of the component operators of operator matrices which are conjugation-normal.\n</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":"35 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On C-Normal Operator Matrices\",\"authors\":\"Eungil Ko, Ji Eun Lee, Mee-Jung Lee\",\"doi\":\"10.1007/s00025-024-02220-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An operator <span>\\\\(T\\\\in {\\\\mathcal {L(H)}}\\\\)</span> is said to be <i>C-normal</i> if there exists a conjugation <i>C</i> on <span>\\\\({{\\\\mathcal {H}}}\\\\)</span> such that the commutator <span>\\\\([(CT)^{\\\\#}, CT]\\\\)</span> equals zero, where <span>\\\\([R,S]:=RS-SR\\\\)</span> and <span>\\\\(R^{\\\\#}\\\\)</span> is a Hermitian adjont operator of <i>R</i> as in (1). If there exists a conjugation <i>C</i> with respect to which <span>\\\\(T\\\\in \\\\mathcal {L(H)}\\\\)</span> is <i>C</i>-normal, then <i>T</i> is called a <i>conjugation-normal</i> operator. In this paper, we study properties of conjugation-normal operator matrices. In particular, we focus on the conjugation-normality of the component operators of operator matrices which are conjugation-normal.\\n</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02220-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02220-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果在 \({{mathcal {H}}\) 上存在一个共轭 C,使得换元 \([(CT)^{\#}, CT]\) 等于零,其中 \([R,S]:=RS-SR\) 和 \(R^{\#}\) 是如 (1) 所示的 R 的赫米特邻接算子,那么这个算子 \(T\in {Mathcal {L(H)}}\) 就被称为 C-normal 算子。)如果存在一个共轭 C,与之相关的 \(T\in \mathcal {L(H)}\) 是 C 正的,那么 T 被称为共轭正算子。本文将研究共轭正态算子矩阵的性质。特别是,我们将重点研究共轭正态算子矩阵的分算子的共轭正态性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On C-Normal Operator Matrices

An operator \(T\in {\mathcal {L(H)}}\) is said to be C-normal if there exists a conjugation C on \({{\mathcal {H}}}\) such that the commutator \([(CT)^{\#}, CT]\) equals zero, where \([R,S]:=RS-SR\) and \(R^{\#}\) is a Hermitian adjont operator of R as in (1). If there exists a conjugation C with respect to which \(T\in \mathcal {L(H)}\) is C-normal, then T is called a conjugation-normal operator. In this paper, we study properties of conjugation-normal operator matrices. In particular, we focus on the conjugation-normality of the component operators of operator matrices which are conjugation-normal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信