具有交叉免疫的登革热模型的优化控制

IF 1.2 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Bernd Kugelmann, Roland Pulch
{"title":"具有交叉免疫的登革热模型的优化控制","authors":"Bernd Kugelmann, Roland Pulch","doi":"10.1186/s13362-024-00150-z","DOIUrl":null,"url":null,"abstract":"Mathematical modelling of a dengue epidemic with two serotypes including a temporary cross-immunity yields a nonlinear system consisting of ordinary differential equations (ODEs). We investigate an optimal control problem, where the integral of the infected humans is minimised within a time interval. The controls represent human actions to decrease the number of mosquitos in the model. An integral constraint is added, which takes a limitation on the sum of the human actions into account. On the one hand, we derive and apply a direct approach to solve the optimal control problem. Therein, a discretisation of the controls is constructed using spline interpolation in time. Consequently, a finite-dimensional constrained minimisation problem can be solved. On the other hand, we employ an indirect approach, where necessary conditions for an optimal solution are considered. This technique yields a multipoint boundary value problem of a larger system of ODEs including adjoint equations. We present results of numerical computations, where the two methods are compared.","PeriodicalId":44012,"journal":{"name":"Journal of Mathematics in Industry","volume":"5 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal control of a dengue model with cross-immunity\",\"authors\":\"Bernd Kugelmann, Roland Pulch\",\"doi\":\"10.1186/s13362-024-00150-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mathematical modelling of a dengue epidemic with two serotypes including a temporary cross-immunity yields a nonlinear system consisting of ordinary differential equations (ODEs). We investigate an optimal control problem, where the integral of the infected humans is minimised within a time interval. The controls represent human actions to decrease the number of mosquitos in the model. An integral constraint is added, which takes a limitation on the sum of the human actions into account. On the one hand, we derive and apply a direct approach to solve the optimal control problem. Therein, a discretisation of the controls is constructed using spline interpolation in time. Consequently, a finite-dimensional constrained minimisation problem can be solved. On the other hand, we employ an indirect approach, where necessary conditions for an optimal solution are considered. This technique yields a multipoint boundary value problem of a larger system of ODEs including adjoint equations. We present results of numerical computations, where the two methods are compared.\",\"PeriodicalId\":44012,\"journal\":{\"name\":\"Journal of Mathematics in Industry\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13362-024-00150-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13362-024-00150-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

登革热疫情有两种血清型,其中包括暂时性交叉免疫,这种疫情的数学模型产生了一个由常微分方程(ODE)组成的非线性系统。我们研究了一个最优控制问题,即在一定时间间隔内受感染人类的积分最小化。控制表示人类减少模型中蚊子数量的行动。我们加入了一个积分约束,它考虑到了对人类行动总和的限制。一方面,我们推导并应用直接方法来解决最优控制问题。在此过程中,我们使用时间样条插值法对控制进行离散化处理。因此,可以求解有限维度的受限最小化问题。另一方面,我们采用了一种间接方法,即考虑最优解的必要条件。这种技术可以求解包括邻接方程在内的较大 ODEs 系统的多点边界值问题。我们介绍了数值计算的结果,并对两种方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal control of a dengue model with cross-immunity
Mathematical modelling of a dengue epidemic with two serotypes including a temporary cross-immunity yields a nonlinear system consisting of ordinary differential equations (ODEs). We investigate an optimal control problem, where the integral of the infected humans is minimised within a time interval. The controls represent human actions to decrease the number of mosquitos in the model. An integral constraint is added, which takes a limitation on the sum of the human actions into account. On the one hand, we derive and apply a direct approach to solve the optimal control problem. Therein, a discretisation of the controls is constructed using spline interpolation in time. Consequently, a finite-dimensional constrained minimisation problem can be solved. On the other hand, we employ an indirect approach, where necessary conditions for an optimal solution are considered. This technique yields a multipoint boundary value problem of a larger system of ODEs including adjoint equations. We present results of numerical computations, where the two methods are compared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics in Industry
Journal of Mathematics in Industry MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.00
自引率
0.00%
发文量
12
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信