变形同调的编织换向性

Masahico Saito, Emanuele Zappala
{"title":"变形同调的编织换向性","authors":"Masahico Saito, Emanuele Zappala","doi":"arxiv-2407.02663","DOIUrl":null,"url":null,"abstract":"Braided algebras are algebraic structures consisting of an algebra endowed\nwith a Yang-Baxter operator, satisfying some compatibility conditions.\nYang-Baxter Hochschild cohomology was introduced by the authors to classify\ninfinitesimal deformations of braided algebras, and determine obstructions to\nquadratic deformations. Several examples of braided algebras satisfy a weaker\nversion of commutativity, which is called braided commutativity and involves\nthe Yang-Baxter operator of the algebra. We extend the theory of Yang-Baxter\nHochschild cohomology to study braided commutative deformations of braided\nalgebras. The resulting cohomology theory classifies infinitesimal deformations\nof braided algebras that are braided commutative, and provides obstructions for\nbraided commutative quadratic deformations. We consider braided commutativity\nfor Hopf algebras in detail, and obtain some classes of nontrivial examples.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation Cohomology for Braided Commutativity\",\"authors\":\"Masahico Saito, Emanuele Zappala\",\"doi\":\"arxiv-2407.02663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Braided algebras are algebraic structures consisting of an algebra endowed\\nwith a Yang-Baxter operator, satisfying some compatibility conditions.\\nYang-Baxter Hochschild cohomology was introduced by the authors to classify\\ninfinitesimal deformations of braided algebras, and determine obstructions to\\nquadratic deformations. Several examples of braided algebras satisfy a weaker\\nversion of commutativity, which is called braided commutativity and involves\\nthe Yang-Baxter operator of the algebra. We extend the theory of Yang-Baxter\\nHochschild cohomology to study braided commutative deformations of braided\\nalgebras. The resulting cohomology theory classifies infinitesimal deformations\\nof braided algebras that are braided commutative, and provides obstructions for\\nbraided commutative quadratic deformations. We consider braided commutativity\\nfor Hopf algebras in detail, and obtain some classes of nontrivial examples.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.02663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.02663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

杨-巴克斯特-霍赫希尔德同调是由作者引入的,目的是对辫状代数的无限变形进行分类,并确定二次变形的障碍。有几个辫状代数的例子满足交换性的较弱版本,称为辫状交换性,涉及代数的杨-巴克斯特算子。我们扩展了杨-巴克斯特-霍赫希尔德同调理论,以研究辫状代数的辫状换元变形。由此产生的同调理论对辫状代数的辫状换元无穷小变形进行了分类,并为辫状换元二次变形提供了障碍。我们详细考虑了霍普夫数组的辫交换性,并得到了一些非难例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformation Cohomology for Braided Commutativity
Braided algebras are algebraic structures consisting of an algebra endowed with a Yang-Baxter operator, satisfying some compatibility conditions. Yang-Baxter Hochschild cohomology was introduced by the authors to classify infinitesimal deformations of braided algebras, and determine obstructions to quadratic deformations. Several examples of braided algebras satisfy a weaker version of commutativity, which is called braided commutativity and involves the Yang-Baxter operator of the algebra. We extend the theory of Yang-Baxter Hochschild cohomology to study braided commutative deformations of braided algebras. The resulting cohomology theory classifies infinitesimal deformations of braided algebras that are braided commutative, and provides obstructions for braided commutative quadratic deformations. We consider braided commutativity for Hopf algebras in detail, and obtain some classes of nontrivial examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信