{"title":"用于局部特征描述和三维物体识别的多尺度点对法线编码","authors":"Chu’ai Zhang, Yating Wang, Qiao Wu, Jiangbin Zheng, Jiaqi Yang, Siwen Quan, Yanning Zhang","doi":"10.1117/1.jei.33.4.043005","DOIUrl":null,"url":null,"abstract":"Recognizing three-dimensional (3D) objects based on local feature descriptors is a highly challenging task. Existing 3D local feature descriptors rely on single-scale surface normals, which are susceptible to noise and outliers, significantly compromising their effectiveness and robustness. A multi-scale point pair normal encoding (M-POE) method for 3D object recognition is proposed. First, we introduce the M-POE descriptor, which encodes voxelized features with multi-scale normals to describe local surfaces, exhibiting strong distinctiveness and robustness against various interferences. Second, we present guided sample consensus in second-order graphs (GSAC-SOG), an extension of RANSAC that incorporates geometric constraints and reduces sampling randomness, enabling accurate estimation of the object’s six-degree-of-freedom (6-DOF) pose. Finally, a 3D object recognition method based on the M-POE descriptor is proposed. The proposed method is evaluated on five standard datasets with state-of-the-art comparisons. The results demonstrate that (1) M-POE is robust, discriminative, and efficient; (2) GSAC-SOG is robust to outliers; (3) the proposed 3D object recognition method achieves high accuracy and robustness against clutter and occlusion, with recognition rates of 99.45%, 94.21%, and 97.88% on the U3OR, Queen, and CFV datasets, respectively.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"41 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-scale point pair normal encoding for local feature description and 3D object recognition\",\"authors\":\"Chu’ai Zhang, Yating Wang, Qiao Wu, Jiangbin Zheng, Jiaqi Yang, Siwen Quan, Yanning Zhang\",\"doi\":\"10.1117/1.jei.33.4.043005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognizing three-dimensional (3D) objects based on local feature descriptors is a highly challenging task. Existing 3D local feature descriptors rely on single-scale surface normals, which are susceptible to noise and outliers, significantly compromising their effectiveness and robustness. A multi-scale point pair normal encoding (M-POE) method for 3D object recognition is proposed. First, we introduce the M-POE descriptor, which encodes voxelized features with multi-scale normals to describe local surfaces, exhibiting strong distinctiveness and robustness against various interferences. Second, we present guided sample consensus in second-order graphs (GSAC-SOG), an extension of RANSAC that incorporates geometric constraints and reduces sampling randomness, enabling accurate estimation of the object’s six-degree-of-freedom (6-DOF) pose. Finally, a 3D object recognition method based on the M-POE descriptor is proposed. The proposed method is evaluated on five standard datasets with state-of-the-art comparisons. The results demonstrate that (1) M-POE is robust, discriminative, and efficient; (2) GSAC-SOG is robust to outliers; (3) the proposed 3D object recognition method achieves high accuracy and robustness against clutter and occlusion, with recognition rates of 99.45%, 94.21%, and 97.88% on the U3OR, Queen, and CFV datasets, respectively.\",\"PeriodicalId\":54843,\"journal\":{\"name\":\"Journal of Electronic Imaging\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Imaging\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jei.33.4.043005\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.jei.33.4.043005","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Multi-scale point pair normal encoding for local feature description and 3D object recognition
Recognizing three-dimensional (3D) objects based on local feature descriptors is a highly challenging task. Existing 3D local feature descriptors rely on single-scale surface normals, which are susceptible to noise and outliers, significantly compromising their effectiveness and robustness. A multi-scale point pair normal encoding (M-POE) method for 3D object recognition is proposed. First, we introduce the M-POE descriptor, which encodes voxelized features with multi-scale normals to describe local surfaces, exhibiting strong distinctiveness and robustness against various interferences. Second, we present guided sample consensus in second-order graphs (GSAC-SOG), an extension of RANSAC that incorporates geometric constraints and reduces sampling randomness, enabling accurate estimation of the object’s six-degree-of-freedom (6-DOF) pose. Finally, a 3D object recognition method based on the M-POE descriptor is proposed. The proposed method is evaluated on five standard datasets with state-of-the-art comparisons. The results demonstrate that (1) M-POE is robust, discriminative, and efficient; (2) GSAC-SOG is robust to outliers; (3) the proposed 3D object recognition method achieves high accuracy and robustness against clutter and occlusion, with recognition rates of 99.45%, 94.21%, and 97.88% on the U3OR, Queen, and CFV datasets, respectively.
期刊介绍:
The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.